
Data Elevator: Low-contention Data Movement in
Hierarchical Storage System

Bin Dong, Suren Byna, Kesheng Wu, Prabhat, Hans Johansen, Jeffrey N. Johnson, and Noel Keen
Lawrence Berkeley National Laboratory, USA

Email: {dbin, sbyna, kwu, prabhat, hjohansen, jnjohnson, ndkeen}@lbl.gov

Abstract—Hierarchical storage subsystems that include mul-
tiple layers of burst buffers (BB) and disk-based parallel file
systems (PFS), are becoming an essential part of HPC systems
to address the I/O performance gap. However, the state-of-the-
art software for managing these hierarchical storage subsystems,
such as Cray DataWarp, requires user involvement in moving
data among storage layers. Such manual data movement may
experience poor performance because of resource contention
on the I/O servers of a layer for serving data movement in
the hierarchy as well as regular read/write requests. In this
paper, we propose a new system, named Data Elevator, for
transparently and efficiently moving data in hierarchical storage.
Users specify the final destination for their data, typically a
PFS. Data Elevator intercepts the I/O calls, stages data on a
fast persistent storage layer (for example, an SSD-based burst
buffer), and then asynchronously transfers the data to the final
destination in the background. Data Elevator reduces the resource
contention on BB servers via offloading the data movement from
a fixed number of BB server nodes to compute nodes. The
number of the compute nodes is configurable based on the data
movement load. Data Elevator also allows optimizations, such as
overlapping read and write operations, choosing I/O modes, and
aligning buffer boundaries. In our tests with large-scale scientific
applications, Data Elevator is as much as 4.2× faster than Cray
DataWarp, and 4× faster than directly writing data to PFS.

I. INTRODUCTION

As high-performance computing (HPC) systems rapidly
grow in computing power, HPC applications can generate
massive amounts of data. However, the improvement in the
speed of disk-based storage systems has been much slower
than that of memory, creating a significant I/O performance
gap [24], [12]. To reduce the performance gap, the storage
subsystem is going through extensive changes [8], [5], by
adding multiple levels of memory and storage in a hierarchy,
as shown in Fig. 1.

As multiple layers of storage, especially those acting as
burst buffers (BB)1, are introduced into a HPC system, the
complexity of data movement among the layers increases
significantly, making it harder to take advantage of the high-
speed or low-latency storage systems [2], [5]. I/O system
software and middle-ware to manage these intermediate layers
of storage could help obtaining superior I/O performance.
Ideally, the presence of multiple layers of storage should be
transparent to applications without having to sacrifice I/O
performance [22]. Meanwhile, it is critical to optimize write

1We will frequently use “BB” to refer a SSD-based burst buffer, and “PFS”
to refer to a disk-based parallel file system, in the rest of the paper.
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Fig. 1: An example HPC storage hierarchy to fill the I/O
performance gap between main memory and disk.

performance across multiple storage layers because most sci-
entific simulations generate large amounts of data and storing
the data for further analysis is needed to reduce effort and
energy consumption in rerunning simulations [24], [19], [26].

A few software solutions have been developed for handling
BB-based hierarchical storage systems. For example, the latest
solutions include DataWarp from Cray [9] and Integrated
Memory Engine (IME) from DDN [22]. A pre-exascale HPC
system, named Cori at the National Energy Research Scientific
Computing Center (NERSC)2 has Cray DataWarp installed.
On this system, the BB space is only usable while a job
is running and therefore users must move their data to PFS
explicitly if they want to store the data permanently. Users
can issue DataWarp staging commands after a job finishes
to move the data from BB to PFS. Users can also modify
their simulation codes to call DataWarp programming interface
to perform moving data to PFS asynchronously. In either
case, DataWarp uses a fixed number of BB server nodes
to perform the data movement, indicating a physical bound
on the I/O parallelism. To make things worse, especially for
write-intensive simulations, these BB nodes also need to serve
regular write requests from applications concurrently during
the data movement. This causes contention on BB server node
resources (e.g., BB node memory and I/O bandwidth) and
results in poor data movement performance from BB to PFS.

To address the issues mentioned above, we design and
implement Data Elevator system for users to run their simula-
tions, especially write-intensive applications, more efficiently
and without any user involvement in data movement. Specif-
ically, Data Elevator intercepts I/O calls from applications
using binary instrumentation method. This approach removes
user involvement of modifying source code of applications to
perform data movement. Applications issue I/O calls to write
data to the final destination of data on PFS, and Data Elevator

2http://www.nersc.gov/users/computational-systems/cori/



intercepts and stages the file on BB for faster I/O. Once the
data is written to the faster BB, the application can continue
with its computation, while the Data Elevator moves the data
to PFS asynchronously. To reduce the resource contention on
BB during data movement, Data Elevator is instantiated either
on separate compute nodes or on the same compute nodes as
an application. While this design of Data Elevator increases
the number of CPU cores needed for running an application,
extensive test results show that using a small portion of
computing power to optimize I/O performance reduces the
end-to-end time of the whole I/O intensive simulation [14].
When the data is in BB, Data Elevator also allows performing
in transit analysis tasks on the data, before it is moved to the
final destination of the file specified by the application. In
summary, the contributions of this paper are the following:

• Conducting performance analysis of the first real BB-
based hierarchical storage system on a pre-exascale HPC
system. Our findings, including the resource contention
on BB servers and poor performance of MPI collective
I/O on BB, are novel observations.

• Designing and developing Data Elevator system to sup-
port low-contention data movement in hierarchical stor-
age systems. Data Elevator offloads the data movement
task from BB servers to computing nodes, using a dif-
ferent data flow path from DataWarp. A challenge we
faced is reducing the movement overhead along the path.
We successfully demonstrated that combining various
well-known optimization techniques, including overlap-
ping reading from BB and writing to PFS and striping
alignment on Lustre, can address the challenges.

• Providing asynchronous I/O support via Data Elevator
for permitting a simulation to move data from BB to
PFS while the simulation concurrently performs its com-
putations. Data Elevator also supports in transit analysis
while the data is in BB. Such in transit analysis can
reduce the data to be written to PFS.

We have evaluated the performance of Data Elevator by
comparing it with Cray DataWarp, the state-of-the-art soft-
ware for BB. Our evaluation shows that Data Elevator is
35.2% faster in moving data across storage layers. We have
also successfully applied Data Elevator to two real scientific
applications: a plasma physics simulation named VPIC [4] and
a global atmospheric dynamics simulation called CAMR [16].
The results show that Data Elevator is as much as 4.2 times
faster than DataWarp in completing the write operations and
4 times faster than writing directly to PFS.

The rest of the paper is organized as follows: We describe
the background and the motivation to our work in Section
II. In Section III, we present the design of Data Elevator
and our current implementation. In Section IV, we describe
our experimental setup and in Section V, we evaluate the
performance of Data Elevator. We discuss related research
in Section VI and conclude the paper with a discussion of
future work in Section VII.
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Fig. 2: Burst Buffer on Cori Supercomputer at NERSC.

II. BACKGROUND

We briefly describe Cray’s DataWarp and HDF5’s Virtual
Object Layer (VOL) technologies that we used in designing
Data Elevator.

A. Burst Buffer and DataWarp

Building hierarchical storage systems is a cost effective
strategy to reduce the I/O latency of HPC applications. The
most recent hierarchical storage system for HPC is the burst
buffer (BB) being installed at Cori, a Cray XC40 system at
NERSC. We show a high-level architecture of Cori with a BB
and its other components in Fig. 2. The BB contains a group of
specialized server nodes and each server has two Intel P3608
3.2 TB NAND flash SSD modules installed on PCI-E bus. The
internal architecture and tasks of SSD (e.g., garbage collection
or wear leveling) are managed by the server nodes. The BB
only manages the aggregated storage pool from each SSD.
These BB server nodes are connected to computing nodes and
Lustre [13] file system via high-speed interconnect network.

Cray DataWarp [9] software aggregates the storage space
of all BB server nodes together as a single storage image. A
user can request and reserve a part of the BB space through a
SLURM job script, for an application to stage the data. Since
SSD has persistence property, the allocated BB space for user
is always cleaned by the DataWarp at the back-end. The BB
request size is ≈ 200GB on Cori and when a user’s request
is large (i.e., > 200GB), multiple BB nodes are allocated
and user’s data is distributed across the allocated nodes. The
stripe size is fixed at 8 MB. In contrast to Lustre, where the
stripe size can be changed by a user, BB stripe size cannot be
changed. In addition, the BB is shared across all users, which
may cause I/O contention from several applications.

As shown in Fig. 2, BB and PFS (Lustre) on Cori are
two independent components. Users need to manage the data
movement between Lustre and the BB manually. To facilitate
data movement, DataWarp provides job script based com-
mands (e.g, stage_out) and a programmable library. Users
can call these commands to move the data synchronously via
job script or by modifying their application source code to
use the DataWarp library to move the data asynchronously.
Internally, after receiving the data movement commands from
users, BB server nodes move the data from the BB to Lustre.
Since these BB server nodes also need to serve the I/O requests
from applications concurrently, using the BB servers to move
data, especially for terabyte-scale or even larger volume of
data, could cause significant contention for the resource on
the server nodes. Hence, using DataWarp for performing the
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Fig. 3: High-level overview of Data Elevator for burst buffer
and parallel file system

data movement could result in slow performance, as was we
observed in our tests.

Moreover, since the number of DataWarp servers is fixed
when building a HPC system, its parallelism for moving data
from the BB to PFS is limited. If considering that a BB
server may be also shared by several users concurrently, the
performance of moving from burst buffer to Lustre could
become worse. Hence, using the BB to temporarily store
the data from simulation code may consume more time than
directly writing data to a disk-based file system. In this study,
we are addressing the issue of poor performance in moving
data from a BB to a PFS and also providing users a transparent
and flexible way to use hierarchical storage systems.

B. HDF5 and VOL Plug-in

HDF5 is a popular scientific data and file format library [6]
used by many scientific applications. HDF5 provides efficient
data organization on disk and supports parallel I/O using
MPI-IO. Virtual Object Layer (VOL) is a new and light-
weight abstraction layer internal to the HDF5 library and is
right below the HDF5 API [6]. VOL supports interception
of the HDF5 API calls that could potentially touch an I/O
request to a file and forward those calls to a plug-in “object
driver”. VOL also provides flexibility to monitor the file access
properties, e.g., file name, file path, etc. In this study, we use
the VOL feature to monitor the file open and close calls of
an application using HDF5 to perform I/O. We also use this
feature to intercept the application data write and read calls
and redirect these calls to a burst buffer.

III. DATA ELEVATOR DESIGN AND IMPLEMENTATION

The high-level goal of Data Elevator is to provide a
transparent and efficient mechanism for moving data across
several layers of hierarchical storage subsystem of HPC. In
this section, we describe the design and implementation details
for Data Elevator in moving data between BB and PFS.

A. Data Elevator Design Overview

The issues we target to address in this paper are: 1) to
provide a transparent mechanism for using a BB as a part of
a hierarchical storage system, and 2) to move data between
different layers of a hierarchical storage system efficiently
with low resource contention on BB nodes. The first issue
arises because burst buffers are introduced in HPC systems as
independent storage spaces. Due to limited storage capacity,

i.e., 2X to 4X the main memory size, burst buffers are typically
available to users only during the execution of their programs.
Consequently, if users choose to write data to BB, they are
also responsible for moving the data to PFS for retaining
the data. The second issue is caused by Cray DataWarp, the
state-of-the-art middleware for managing burst buffers on Cray
systems. DataWarp uses a fixed and small number of BB
nodes to serve both regular I/O and data movement requests.
This typically results in performance degradation caused by
interference between the two types of requests.

To address above issues, we design Data Elevator to per-
form asynchronous data movement to enable transparent use
of hierarchical data storage, and also to use a low-contention
data flow path by using compute nodes for transferring data
between different storage layers. Data Elevator allows one to
use as many data transfer nodes as necessary, which reduces
the chance of contention. We present a high-level architecture
of Data Elevator in Fig. 3. Overall, Data Elevator has three
main components: I/O call Interceptor (IOCI), Data Elevator
Metadata Table (DEMT), and Transparent and Efficient Data
Mover (TEDM or Data Mover in short).

The IOCI component intercepts I/O calls from applications
and redirects I/O to fast storage, such as burst buffer. We
implement IOCI mechanism using the HDF5 VOL feature, by
developing a VOL plug-in (details in §III-B). While the current
implementation supports HDF5-based I/O, the implementation
can be extended to other I/O interfaces, such as MPI-IO and
PNetCDF [14]. DEMT contains a list of metadata records,
e.g., file name, for the files to be redirected to BB (details in
§III-C). The Data Mover (TEDM) component is responsible
for moving the data from a burst buffer to a PFS based on
the metadata. TEDM component can share the nodes with the
application job or run using a separate set of compute nodes
(details in §III-D). In Fig. 3, the TEDM shares two of the eight
CPU cores with a simulation job (that uses the remaining six
cores) on a computing node.

To use Data Elevator, users only need to compile their
existing application code using the HDF5 library with the
IOCI VOL plug-in. Then, users can start their application and
TEDM at the same time with their preferred configurations,
e.g., the number of processes. When the application writes
their data to a parallel file system (PFS), IOCI traps I/O calls,
creates temporary files on burst buffer, and redirects the data
to burst buffer. Meanwhile, the metadata information, e.g.,
file name and the progress information of writing, will be
appended to a metadata table by the IOCI.

Data Elevator applies various optimizations to improve I/O
performance in writing data to BB (details in §III-B). After
the application finishes writing a data file, it can continue
computations without waiting for the data to be moved to
a PFS. Meanwhile, the Data Mover monitors the metadata
periodically and once it finds that the writing process is
complete, it starts to move the data from the BB to the PFS.
Data Elevator reads the data from the BB to the memory on
computing nodes, where Data Elevator is running, and writes
the data to PFS without interfering with other I/O requests



on the BB. Data Elevator provides optimizations, such as
overlapping of reading data from BB to memory and writing
to the PFS, and aligning Lustre PFS stripe size with the data
request size (assuming PFS is Lustre) to reduce the overhead
of data movement. While the data is in the burst buffer, Data
Elevator allows data analysis codes to access the data, which
is called in situ or in transit analysis, by redirecting data read
accesses to the data stored in the burst buffer.

Data movement from BB to PFS starts after a file is written
to the BB and is closed. At this stage, the data is in a persistent
state and the file is deleted only after the data is written to the
destination specified by the application. In case of any failure
of moving the data from BB to PFS, the Data Mover restarts
to the entire file transfer to avoid any consistency. While we
have not implemented at the moment, we can use checksums
to guarantee the integrity of data.

B. Light-weight I/O redirection and optimizations
One key objective of Data Elevator is enabling users to use

a hierarchical storage system effectively without modifying
their existing application source code. To this end, we design
the IOCI plug-in to intercept popular I/O interfaces. A main
design consideration in developing IOCI is to minimize the
overhead of I/O redirection. When an application opens or
creates a file on PFS (e.g., file f.h5 in Fig. 3), the IOCI plug-in
captures the file name and creates a corresponding temporary
file (e.g., file f.h5.temp in Fig. 3) on the BB. The file pointer
to the temporary file is passed back to the caller in place of
the file pointer to the file on PFS. Using this file pointer, the
subsequent write operations for the file on PFS are redirected
to the file on the BB. IOCI adds the information of the file
name on disk and the file name on the BB to the metadata
table as a new record. To detect the completion of writing the
file, IOCI also intercepts file close calls. Once a file close call
is detected, IOCI updates the status of the file in the metadata
table. To mask the overhead of creating new file in IOCI, the
Data Mover pre-allocates a list of files while it is idle. The
only cost of the I/O redirection is to create a new record in the
metadata table and update the completion status of the record.

By default, Data Elevator takes an entire file as a unit of
I/O redirection, instead of smaller units such as disk block,
memory page, etc., to reduce overhead of managing metadata
for potentially a large number of smaller units of data. Using
HDF5 dataset and HDF5 group as basic granularity of I/O
redirection may not be portable because I/O libraries other
than HDF5 may not support these concepts. For these reasons,
Data Elevator treats the whole file as the default unit for I/O
redirection, but it also provides other options to users.

Optimizations in writing data to a burst buffer. Although
SSD-based burst buffers are faster than disk-based PFS, in
Data Elevator, we use optimizations to improve writing data to
BB depending on the HPC system characteristics. For instance,
in our tests with the burst buffer on Cori, we found that the
performance of MPI-IO with collective buffering to write data
to the burst buffer is worse than that of MPI-IO with inde-
pendent I/O. We found that it is caused by lock management

issues of the storage manager for BB [3]. On disk-based Lustre
file systems, existing simulation codes usually deliver better
I/O performance using the collective I/O mode than in the
independent I/O mode. Therefore, most existing simulation
codes use collective I/O. To avoid the need for users to change
from collective I/O to independent I/O, the IOCI plug-in is
designed to detect collective I/O function calls in applications.
If Data Elevator finds applications using collective I/O, the
independent I/O mode is used for writing data to burst
buffer. In the current implementation with HDF5 library, the
IOCI plug-in also intercepts H5Pset_dxpl_mpio and other
related functions, and disables collective I/O, when detected.

C. Consistent metadata management for coordinating jobs
We use a metadata table named DEMT on BB for the com-

munication among simulation application job, any in transit
analysis job and the Data Mover job of Data Elevator. DEMT
also works as a journal to recover from any potential errors
during data movement. This approach removes the complexity
of involving all jobs to maintain and monitor the status of
other jobs. Since these jobs may access DEMT concurrently
it is critical that they have a consistent view of it.

Status Description
W Start writing to BB
B Finish writing to BB
A Start analysis
M Finish analysis
D Start moving to PFS
F Finish moving to PFS restart moving file
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Fig. 4: The metadata indicating the status of a file being
maintained by Data Elevator and the state transitions.

The DEMT contains four columns: the name of file on PFS,
the name of temporary file on BB, the file status and the size
of the file on PFS. The name of file on PFS is the name of
the file used by the simulation job to store its data on PFS.
For a data analysis job, the name of file on PFS is the file
containing the data to be analyzed. The file status includes
one of six categorical values shown in Fig. 4 at any instance.

The status transition diagram is also shown in Fig. 4. To
provide a consistent view of the DEMT among multiple jobs,
only a single process (usually MPI rank 0) from a certain job
is used to access the DEMT and only a job can update it at one
time. Specifically, a new record in DEMT containing the file
name on PFS and file name on BB is appended once from an
application job via the IOCI plug-in. The record is deleted by
the Data Mover job after moving the data to the PFS. Hence,
there is no conflicting access to the file name on PFS and file
name on BB. After a new record is appended to DEMT, W
and B is sequentially assigned to the file status by the IOCI
plug-in. Until its status changes to B, a data analysis job can
update its status to A and M. Only after M of a file is detected,
the Data Mover job can update the status to be D and move



its data to PFS. Once data is written to the destination, the
Data Mover updates the status to F. For simulations without
any in transit jobs running, the Data Mover can directly move
the data of a file after its status changes to B.

For supporting in-transit data analysis tasks that do not
update DEMT, this consistency strategy can be simplified
further to improve the overall execution time of these jobs.
Specifically, after the status of file changes to B, the Data
Mover and analysis jobs can start to work on the data on the
BB at the same time. In this case, no status updates from
analysis jobs are needed. The Data Mover updates the status
from B to F when the data is moved to PFS. At the same time,
analysis job can delete the record and file after it is finished.

D. Low-contention data movement
The Data Mover is responsible for moving data between

a burst buffer and a PFS efficiently with low contention on
the BB server nodes. Toward this goal, we propose to run
a Data Mover job on computing nodes. With this approach,
the data to be written to PFS from the BB is first moved
to memory on the compute nodes and then written to PFS.
The Data Mover nodes use efficient parallel I/O techniques in
writing the data to PFS. Since moving the data from BB to the
memory is faster than writing data to PFS, resource contention
on BB servers will be less compared to using BB servers for
writing to PFS. The CPUs of BB servers can spend more
time on serving other I/O requests, while moving the data to
PFS is offloaded to the Data Mover nodes. Writing data from
the compute nodes gives flexibility to apply various parallel
I/O performance tuning optimizations compared to DataWarp,
which as fixed data movement strategy installed on BB servers.
Toward the goal of improving performance of the Data Mover
job, we have explored various optimizations.

Scalable parallel data movement. The Data Mover job is
highly parallel in its design and have the potential to use
an arbitrary number of parallel processes to perform data
movement. As a result, the time used to move data can be
sharply reduced, thus reduce the chance of resource contention
on burst buffers. When a new file on the burst buffer is ready
to be moved, Data Mover checks the file size and partitions the
file evenly among its available processes. For the file whose
size is larger than the aggregated physical memory size of
compute nodes that the Data Mover job is running on, the
file is moved in several parts, called chunks. The chunk size
is determined by the available memory size for the compute
nodes. Moreover, to fully utilize the parallel bandwidth from
compute nodes to parallel file systems, the Data Mover job
can be run on all computing nodes where the simulation job
is running, which is called shared mode (as shown in Fig. 3).
Users can also choose to run Data Mover on dedicated nodes,
which is called disjoint mode.

Overlapping reading from BB and writing to PFS. The two
main tasks of a Data Mover job is to read data from a burst
buffer and to write the data to a PFS. To optimize these tasks,
we propose overlapping the read and the write operations.
Such overlapping is possible because the burst buffer and the

parallel file system are two independent components in a HPC
system. Overlapping reading and writing can keep both of
them busy and reduce the overall time.

Stripe size alignment. Toward improving the performance
of writing data to PFS, we align the size of an I/O request from
Data Mover job with the stripe size of the PFS. It is possible
to choose different stripe size for the moved file because IOCI
(in previous subsection) delays the file creation on PFS. The
Data Elevator can set the stripe size using Lustre command
or API when it decides to move the file to PFS. Stripe size
alignment can reduce the number of Object Storage Targets
(OSTs) involved for a single file request. In other words,
each write request from Data Mover is sent to a single OST
and therefore reduces the I/O contention of different TEDM
requests. Data Elevator also uses independent I/O rather than
collective I/O on Cori. Since Data Mover performs reading and
writing on the file in contiguous pattern, using independent I/O
can avoid extra memory copy to MPI-IO aggregators.

We implemented Data Mover using a master-worker archi-
tecture, where MPI rank 0 functions as the master and all
the other MPI ranks are workers. As an optimizations, the
master process checks the metadata table periodically and
when it finds that a file is available to be moved from BB
to PFS, it broadcasts the file name to all the other processes
to start moving the file. Using a single MPI rank to access the
metadata avoids any scaling issues because it only requires
retrieving the file name to be moved. All processes work on the
same file concurrently using the MPI-IO library.In our current
implementation, the Data Mover job needs to be initiated with
the application job by a user. However, HPC facilities can run
the Data Mover job as a service without requiring a user to
run the job.

E. In transit Data Analysis
Several scientific simulations are performing analysis of

data while the data is either in memory or in a burst buffer to
avoid costly data access to parallel file systems. This type
of analysis is called in situ or in transit analysis. These
analysis applications can be start in conjunction with the
simulations and read the data written by the simulations. Using
the same method of redirection of writing data produced by a
simulation to the burst buffer, Data Elevator also supports
in transit analysis through redirecting the read requests of
analysis applications accessing data from the PFS to accessing
from the burst buffer. Specifically, the analysis codes can also
link to the IOCI plug-in for redirecting their PFS requests to
the burst buffer. This plug-in can automatically intercept the
file open calls and update metadata for the file under analysis.

IV. SYSTEM CONFIGURATION

We have conducted our evaluation on Cori Phase 1, a Cray
XC40 supercomputer at NERSC. Cori Phase 1contains 1, 630
compute nodes and each node has 32 Intel Haswell CPU
cores and 128 GB memory. The Lustre file system of Cori
has 248 Object Storage Targets (OSTs) providing 30 PB of
disk space. Cori is also equipped with an SSD based ‘Burst



Buffer’ (as shown in Fig. 2). The Burst Buffer is managed by
DataWarp from Cray and have 144 DataWarp server nodes.
We have implemented Data Elevator in C and compiled with
Intel compilers. Our tests for disk based performance used
all 248 OSTs of the Lustre. In tests for the BB, we used
all 144 DataWarp server nodes. The striping size for multiple
DataWarp servers is fixed at 8MB, which cannot be modified
by normal users. As such, we set the striping size of Lustre
file system also to be 8MB.

V. PERFORMANCE EVALUATION

To evaluate Data Elevator, we have conducted two sets of
experiments. We first tune various configuration parameters
of Data Elevator using parallel I/O kernels extracted from
scientific applications. We then use two real applications for
demonstrating the advantages of Data Elevator. Following
the typical workflow in scientific applications, we assume all
data files need to be stored on the disk-based PFS for future
analysis. We use end-to-end execution time of applications and
end-to-end data movement time as the metrics for performance
evaluation.

• End-to-end execution time measures the elapsed time
of an application. This time includes computing and
communication times to run a simulation and I/O time
to access data from or to PFS. When the burst buffer is
involved, I/O time includes the time to write the data to
the burst buffer and the time to move the data to the PFS.

• End-to-end data movement time is a portion of the end-
to-end execution time. It specifically measures the I/O
time that an application spends to move data from the
memory to Lustre. For DataWarp and Data Elevator, it
includes the time to write the data to the burst buffer and
the time to move data from the burst buffer to the PFS.

A. Tuning Data Elevator using I/O benchmarks

We evaluated various configurations of Data Elevator using
two parallel I/O benchmarks: VPIC-IO and Chombo-IO. Both
benchmarks have a single time step and generates a single
HDF5 file. VPIC-IO [4] is a parallel I/O kernel of a plasma
physics simulation code, called VPIC. In our tests, VPIC-
IO writes 2 million particles and 8 properties per particle,
resulting in a file of 64GB in size. Chombo-IO is derived from
Chombo, a popular block-structured adaptive mesh refinement
(AMR) library [1]. The generated file has a problem domain
of 256× 256× 256 and is of 146GB in size.

Writing data to the burst buffer. Data Elevator can auto-
matically set or unset the MPI-IO collective buffering mode
in writing data to a burst buffer. In Fig. 5a, we show the I/O
rate of VPIC-IO with and without MPI-IO collective buffering
and without that mode using different numbers of cores. We
have observed that independent I/O mode outperforms col-
lective buffering mode significantly. VPIC-IO uses collective
buffering, by default, to write its particle data as that mode
obtained the best performance for writing data to Lustre [4].
As we observe that independent I/O is performing better on the
burst buffer, we select independent I/O regardless whether the

user requested collective buffering mode or not. This improves
performance and does not require any application code change.

Overlapping of reading intermediate file from the burst
buffer and writing to Lustre improves the performance of Data
Elevator. In Fig. 5b, we show the end-to-end data movement
time with and without overlapping the read and the write
operations. For both benchmarks, we can clearly observe that
overlapping reading from the burst buffer and writing to the
PFS can reduce the data movement time by 46% for VPIC-IO
and by 32% Chombo-IO. Thus, we conclude that overlapping
the read and the write operations is an effective strategy. In the
remaining tests, we overlap the read and the write operations.

Aligning the request size of the data movement with the
stripe size of the Lustre PFS is another optimization strategy
used in Data Elevator to accelerate the data movement to
PFS. We compare the performance of writing the data with
and without aligning the Data Mover’s I/O request size with
Lustre stripe size. On average, aligning the request size with
the stripe size increases write performance by 65%. This result
indicates that such alignment is an effective strategy for Data
Elevator. In the rest of the tests, we have set the requests size
to be equal to the stripe size.

Using the compute nodes in shared or disjoint modes. In
Fig. 5d, we show the end-to-end data movement time with
Data Elevator sharing a small portion of each node where the
data producing application is running and that using a set of
dedicated nodes, for both I/O kernels. Running Data Elevator
in the shared mode can save up to 92% of the time spent on
the data movement on average for the two benchmarks. In the
shared mode, we have used 16 CPU cores out of the 32 cores
on each node, distributing 1024 the Data Mover job processes
on 64 nodes. The simulation application was running at the
same scale on the 64 nodes. In the disjoint mode, 1024 the
Data Mover job processes were run on 32 nodes and the 1024
simulation processes are running on another 32 nodes. We
observed that the performance of Data Mover is better in the
shared mode because more bandwidth is available between
compute nodes and PFS.

Varying the number of Data Elevator nodes in data move-
ment. Using a large fraction of CPU cores for the Data Mover
may not be feasible because simulations have high demand
for the cores, we have varied the fraction of cores for Data
Elevator. In Fig. 5e, we have varied the size of the Data Mover
job in proportion to the simulation job as “1:1”, “2:1” and
“4:1”. For instance, in “4:1” configuration, simulation job runs
on 1024 cores and the Data Mover job runs on 256 cores. The
results show that as we decrease the number of CPU cores
for running the data movement job from 1024 to 256, the
time increases only by 26% on average for both benchmarks.
Although we use “1:1” configuration in this paper because the
simulations we tested are not CPU demanding, the ratio is a
configurable option in Data Elevator.

Metadata overhead in Data Elevator. Managing metadata
table is one of important tasks in Data Elevator. This overhead
has to be negligible for efficient use of Data Elevator. In
Fig. 5f, we compare the metadata management overhead
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Fig. 5: Performance evaluation using VPIC-IO and Chombo-IO, both has a single step and writes data to a single HDF5 file.

with opening or closing a single HDF5 file. The metadata
management includes appending new record to metadata table
and updating the status of a file in the table. As can be
observed, the time for metadata operation in Data Elevator
is a negligible 11% of opening or closing a file.

B. Performance Evaluation using benchmarks

Comparison with DataWarp. With the optimizations and
configurations described above, we compare the Data Elevator
with DataWarp, the state-of-art software for the burst buffer.
In this test, DataWarp uses all 144 nodes to move data
from the burst buffer to the Lustre PFS. In Data Elevator,
we used 64 compute nodes to move data as using “1:1”
configuration discussed above. For both benchmarks, Data
Elevator outperforms DataWarp stage_out command, as
shown in Fig. 5g. Data Elevator is 22% faster than DataWarp
command for moving VPIC-IO data, and is 48% for Chombo-
IO data.

Comparison of the end-to-end data movement time. We
show the end-to-end data movement time in running these
two benchmarks with different configurations in Fig. 5h. PFS
performance includes the time to directly write data to Lustre.
For DataWarp and Data Elevator, the time for writing data to
burst buffer and the time for moving the written data to parallel
file system are included. DataWarp provides a job script based
command (i.e., stage_out) and a library-based API to move
data. With the command, DataWarp can move data only at
the end of an application. Using the API, benchmark codes
need to be modified to move the data after the file is written.
The staging out of data can be done asynchronously in this
mode. We test these two modes of DataWarp separately. Their
performance is equal in this test because both benchmarks are
running just for a single time step. From these results, it easy
to identify that writing the data to burst buffer having smaller
end-to-end data movement time. In short, using DataWarp and
Data Elevator can reduce the end-to-end execution time, how-

ever, Data Elevator outperforms DataWarp based techniques
by 14% for both benchmarks.

C. Performance evaluation with science simulations
We evaluate Data Elevator using two real science appli-

cations: a plasma physics simulation studying space weather
(VPIC), and a climate simulation studying atmosphere dynam-
ics (CAMR). Both of these simulations perform computations
and produce output files periodically that need to be stored to
storage for future analysis.

1) Plasma physics simulation: VPIC (vector particle-in-
cell) is an important code for simulating magnetic recon-
nection via monitoring electron motion in 3D space [4].
In evaluating Data Elevator, we used a medium scale (for
matching the job size limit on Cori). We have run an open-
boundary magnetic reconnection simulation for 20 time steps.
At the end of each step, VPIC writes a single HDF5 file
containing properties of particles. The file size for each step in
this simulation was 88GB, with a total of 1.7TB data for the
20 steps. Since the portion of computation in this simulation
is small, VPIC tends to be extremely I/O intensive in our tests.

In Fig. 6a, we show the end-to-end execution time in detail
for a test case with 1024 CPU cores. Using Lustre PFS to
store the data, VPIC has the largest end-to-end execution time.
Staging data onto burst buffer temporarily reduces the end-
to-end execution time significantly for both DataWarp and
Data Elevator. Since the stage_out command of DataWarp
can only be issued in a batch job script after the simulation
is completed, the DataWarp command option has to wait
for data from all the time steps is written to the burst
buffer. The asynchronous API of DataWarp library enables
to move data to PFS once a time step file is on the burst
buffer. However, because DataWarp servers are perhaps busy
with requests from other applications along with writing the
frequently arriving files from the VPIC simulation, resource
(e.g., cache) contention on BB servers makes the performance
of data movement is low even with asynchronous option. With
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Fig. 6: Strong-scaling performance comparison, where the number of particles in VPIC simulation remains constant.

TABLE I: Configurations of CAMR for weak scaling tests
# of CPU Cores 1024 2048 4096 8192
CubedSphereFactory.num cells 1024 2048 4096 8192
File size per checkpoint 43GB 170GB 680GB 2.7TB

Data Elevator, the contention on the burst buffer between
I/O requests of applications and the data movement to Lustre
are reduced by offloading data movement job to computing
nodes. As a result, we see significantly better asynchronous
data movement performance with Data Elevator. We observed
the same pattern for the end-to-end execution time in our tests
with larger number of CPU cores. Because of the page limit,
we only report the end-to-end execution time for 1024 CPU
cores here.

In Fig. 6b, we show the end-to-end data movement time for
all 20 time steps with VPIC strong scaling. Overall, the end-
to-end data movement time decreases gradually when using
more cores. When the number of CPU cores is 1024, PFS
takes more time than DataWarp because only 32 compute
nodes write to PFS, whereas DataWarp uses 144 nodes to
move data to PFS. As we increase the number of processes
(i.e., nodes), the writing data to PFS becomes faster. The time
for DataWarp stays the same because the number of DataWarp
servers remain fixed at 144. Since Data Elevator used various
optimizations to reduce the data movement overhead, it always
performs the best at all scales. On average, using Data
Elevator to move data for VPIC is 1.7X, 1.8X, and 4.2X
faster than PFS, DataWarp Command, and DataWarp API,
respectively.

2) Climate simulation: CAMR (Climate Adaptive Mesh
Refinement) [16] is a code for simulating atmospheric dynam-
ics in global climate models. The application’s I/O patterns are
typical for climate applications: relatively small data files are
input once, and subsequent checkpoint and analysis files are
output periodically during the simulation. We have run this
code for 20 time steps. The checkpoint interval is set to be 2,
giving 10 checkpoint files in total. We provide the details of
this configurations in Table I. Since the largest scale for the
number of cubed-sphere factory cells learned from domain
scientist is 8192, we ran our scaling tests for CAMR using up
to 8192 CPU cores.

In Fig. 7, we compare performance of Data Elevator
with scaling the problem size of CAMR as we increase the

number of CPU cores. Compared with VPIC, CAMR is more
computing intensive. Hence, from Fig. 7a, we can see the
time between the data movement from burst buffer to PFS
by DataWarp API and Data Elevator. Being consistent with
the results from VPIC analysis, writing data to PFS directly
takes the longest time. Writing data to the burst buffer for
staging reduces the end-to-end execution time. Also, DataWarp
command can only move data after CAMR has finished
and DataWarp API and Data Elevator permits asynchronous
data movement. The scaling performance from 1024 to 8192
CPU cores is compared in Fig. 7b. While DataWarp API is
performing comparable to Data Elevator up to 4K cores, in
the case of using 8K cores where the amount of data reaches
2.7TB per time step, the API performs slow. With 8K-core
test, Data Elevator outperforms the DataWarp API approach
by 6.7X Hence, the performance of moving the large file using
DataWarp API while simulation is running is extremely poor,
as we analyzed in previous sections. On the other hand, we
observe that Data Elevator performs constantly the best at
all scales. On average, the end-to-end data movement time of
Data Elevator is 4.0X, 1.2X, 3.3X faster than that of PFS,
DataWarp Command, and DataWarp API, respectively.

D. In transit analysis for VPIC simulation

One of the advantages of Data Elevator is the flexibility
of performing in transit analysis while the data is in the burst
buffer. We chose VPIC simulation since domain scientists from
plasma physics perform certain runtime analysis, e.g., filtering
particles with certain conditions. Here, we use a query-driven
analysis, with query “Ux > 0.97”, to find the targeted particles,
where “Ux” is the velocity of a particle in x direction. To help
post-hoc query-driven analysis, users build a certain type of
index (e.g., bitmap index) in advance while the simulation is
sill running [4]. Hence, we used FastQuery [7] to build the
bitmap index. In addition to building the index, we also ran
the above mentioned query after the index is built. FastQuery
supports HDF5 data format and it can link to Data Elevator
library to redirect its data read stream from PFS to burst buffer.
But without Data Elevator, users need to stage their data using
DataWarp onto PFS first, then build index and finally filter
particles. The overhead of staging out data using DataWarp is
detailedly discussed in previous sections. Here, we focus on
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Fig. 7: Scaling results of CAMR simulation as we increase the problem size with the number of processes. As the data size
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Fig. 8: In transit data analysis for VPIC simulation data

the performance of building index and of running the query on
the Lustre PFS and on the burst buffer using Data Elevator.
We show that the performance using the data of a single step
of VPIC in Fig. 8. It is clear that using Data Elevator to build
the index and to evaluate a query on the burst buffer via Data
Elevator is faster than accessing data from PFS. Specifically,
building index on burst buffer via Data Elevator is 1.9X faster
than building index from the staged out file on PFS. Filtering
the particles on burst buffer via Data Elevator is 6.6X faster
than filtering the particles after they are stored on PFS.

VI. RELATED WORK

Several efforts like FlashCache [25] and CBDMA [23]
explored hierarchical storage systems on a single node [17].
Building large-scale burst buffer based hierarchical storage for
HPC systems and exploring its optimizations, however, started
recently and there are a few related research efforts.

Liu et al. [20] studied a disk-based external storage system
augmented with a tier of SSD-based burst buffers located in
a set of I/O nodes on HPC. Wang et al. [29] also studied a
burst buffer architecture that is attached to computing nodes
via emulation. We conducted our research on a burst buffer in
a production HPC environment. In our study, the burst buffer
is managed as a single storage space separated from memory
and disk-based parallel file system.

Wang et al. [28], [29] proposed TRIO to use a burst buffer
for running I/O intensive simulations on HPC. In TRIO, the
SSD devices are located close to memory and each file inside
SSD is viewed as a set of blocks. Wang et al. also explored

methods for quickly moving these blocks from the SSD to a
PFS. Burst buffer was also explored to aggregate written data
at SSD on computing nodes [21]. In contrast, our work aims
at a different architecture for burst buffers where fast SSD
drives are managed as single storage space and the whole file
is viewed as a single unit. We also explored new file-level
optimizations, e.g., overlapping and string size alignment, for
efficient data movement.

DataSpaces framework [10] studied staging of data across
deep memory hierarchies [15]. This work aims at using
both DRAM and SSDs to support dynamic data staging for
the data coupled between data producers and consumers of
workflows. The authors also explored an application aware
data placement in memory hierarchy to reduce the overhead
of reading data from lower levels. This paper focuses on
efficient data movement from burst buffer to PFS, where
new optimizations are still needed. Cray DataWarp [9] is
the state-of-art system for managing burst buffers. DataWarp
provides user an independent and file-based storage space for
applications. Meanwhile, DataWarp provides job script based
commands and an API for users to move the data between
the burst buffer and PFS. In this work, we analyzed the
limitations of DataWarp and compared its performance with
Data Elevator and using extensive evaluation. Tiwari et al.
[27] explored a method, named Active Flash, to use computing
capability embedded in SSD flash drives for performing in-
situ data analysis. Other post data analysis work [11], [18]
also exist. In this work, we provided a Data Elevator library
to allow applications to use the burst buffer for in transit
analysis and to run analysis codes on compute nodes that offer
significant flexibility.

VII. CONCLUSIONS

HPC storage subsystem is going through revolutionary
changes by including new storage layers such as burst buffer
(BB), known as hierarchical storage system. During our first-
of-a-kind analysis on a cutting-edge hierarchical storage sys-
tem, we found that the data movement across different layers
needs extensive user involvement and its performance is also
poor because of the resource contention on BB servers. In
this paper, we proposed Data Elevator that uses asynchronous



I/O to support transparent usage of burst buffers. To support
efficient data movement, Data Elevator uses a new and low-
contention data movement path via computing nodes. We
also explored and discussed the possibility of using a few
well-known techniques, such as overlapping, to reduce the
overhead of data movement. Our performance evaluations
show that Data Elevator is 35% faster than DataWarp in the
data movement from the BB to the PFS at a small scale of 1024
processes. We have applied Data Elevator to real simulation
applications from plasma physics and climate modeling do-
mains. The end-to-end data movement time required by those
applications using Data Elevator can be reduced by up to
4.2×. Data Elevator also supports in transit data analysis. The
in transit index construction and query evaluation with Data
Elevator is 1.9X and 6.6X faster than with PFS.

We are expanding Data Elevator to support data movement
among more storage layers, such as node-local memory. We
are also working to support prefetching or pre-staging the data
from a PFS to a BB or to a node-local memory. We also plan to
evaluate the energy efficiency of Data Elevator, as discussed
in Active Flash [27].
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