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Applications of extended precision arithmetic

. Determining the extent of numerical round-off error in scientific simulations.
Overcoming numerical round-off error in scientific simulations.

. Resolving uncertainties in computational geometry.

Computing numerical integrals to high precision.

. Recovering integer relations in real numbers.

Recognizing numerical constants.

. Cryptography:.



Available software for extended precision arithmetic

1. Double-double arithmetic in some Fortran systems (real*16).

(a) Advantages: reliable, accurate, full functionality.

(b) Disadvantages: performance is often poor; only double-double.
2. Brige’s double-double sottware.

(a) Advantages: reliable, accurate.

(b) Disadvantages: performance is fair; only double-double; no high-level language support.
3. Extended precision facilities in Maple and Mathematica.

(a) Advantages: scalable precision, very complete functionality.

(b) Disadvantages: performance is poor; somewhat expensive.
4. Multiple precision software packages (DHB’s mpfun, Brent’s mp, Gnu’s gnump).
(a) Advantages: scalable precision, high-level language support (DHB).

(b) Disadvantages: performance is poor for modest precision levels.



A New Quad-Double, Double-Double Package

o Written mostly in C and C++.
o Targeted exclusively to IEEE compliant computer systems.

e Includes basic arithmetic operations, plus binary-decimal. square root and
common transcendental functions.

e Includes C++ and Fortran-90 “wrappers” that permit ordinary programs
to utilize these routines with only minor changes to conventional programs.



Application: Climate Modeling

Many climate modeling codes are beset with severe numerical non-reproducibility:

e Codes ported to different vendor systems.
e Codes run on different systems of the same vendor.
e Codes run on the same system, but with different numbers of processors.

e [s there a bug? No way to tell.

These difficulties have been dramatically reduced by using double-double rou-
tines in just one key inner product subroutine.



Application: Vortex roll-up simulation

Vortex roll-up simulation runs 5 times faster with quad-double package than
with DHB’s mptun package. Has saved thousands of CPU-hours on a highly
parallel supercomputer.
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Application: Numerical quadrature

Consider the constant
o = [ cos(2t) A\AWO ooiﬂ\\ﬂvv dt
=1
This integral can be evaluated numerically by means of tanh-sinh quadrature

and an approximation to the tail of the infinite product.

Result using double precsion (approx. 16 decimal digits):

a = 0.392699081698724
/8 = 0.392699081698724

Is this a coincidence?



Application: Numerical quadrature

Consider the constant
o = [ cos(2t) A\AWO ooiﬂ\\ﬂvv dt
=1
This integral can be evaluated numerically by means of tanh-sinh quadrature

and an approximation to the tail of the infinite product.

Results using double-double precision (approx. 32 digits):

a = 0.39269908169872415480783042290993
/8 = 0.39269908169872415480783042290993

These values still appear equal.



Application: Numerical quadrature

Consider the constant

o = [ cos(2t) FW OOm@\Sv dt

This integral can be evaluated numerically by means of tanh-sinh quadrature
and an approximation to the tail of the infinite product.

Results using quad-double precision (approx. 64 digits):

a = 0.3926990816987241548078304229099378605246454341872315959268122874
/8 = 0.3926990816987241548078304229099378605246461749218882276218680740

These results differ in the 42nd decimal place!

Conclusion: «a # 7/8.



Adding two IEEE double numbers exactly

(Priest) The following algorithm computes s = fi(a 4+ b) and e = err(a +b), assuming |a| > [b|.
QUICK-TwWO-SuM(a, b)

l.s—a®b

2.¢—bo(sSa)

3. return (s, e)

(Knuth) The following algorithm computes s = fl(a + b) and e = err(a + b). This algorithm
uses three more floating point operations instead of a branch.

Two-SuM(a,b)

l.s—a®db

2. 0V—5060a

3.e— (a6 (s6v)d(bov)

4. return (s, e)
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Multiplying two IEEE double numbers exactly

(Shewchuk, Dekker) The following algorithm splits a 53-bit IEEE double precision floating point
number into ay; and ay,, each with 27 bits of significand, such that a = ay; + ay,.

SPLIT(a)

L.t (22"+1)®ua

2. ap — tS (tSa)

3. Al <= 4 O ap;

4. return (ay;, aj,)

(Shewchuk, Veltkamp) The following algorithm computes p = fl(a x b) and e = err(a x b).
Two-PROD(a, b)

l.p—a®b

2. (ani, alo) < SPLIT(a)

3. (b, bio) < SPLIT(D
4. e — ((ap @ b © p) B ay @
blo @ alo @ bpi) B ajo @ by

5. return (p, e)

S S’
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Quad-double + double
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Quad-double 4+ quad-double
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Quad-double x double
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Transcendental functions

e sqrt: Employ Newton iterations (double, double-double, then quad-double).
e exp: Reduce argument to Alw log2 <t< wﬁom 2), then apply Taylor series.
e log: Employ Newton iterations, based on exp calculations.

e cos, sin: Reduce argument to within an interval of size /1024 in the unit
circle, then apply Taylor series.

e arccos, arcsin: Employ Newton iterations. based on cos. sin calculations.
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High-level language support

High-level translation modules (“wrappers”) permit one to utilize double-double
and quad-double in ordinary C++ and Fortran-90 programs, with only minor
modifications to source code.

Fortran-90 example:

program testdd

use qdmodule

type (qd_real) a, b, ¢
a=-1.4d0

b =2.40

c = acos (a) * sqrt (b)
call qdwrite (6, c)
stop

end

This program produces the result
4.442882938158366247015880990060693698614621689375690223085395607 E0
which is 7 % v/2, correct to 63 decimal digits.
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Performance (average run times in microseconds)

Operation Pentium II | UltraSparc | PowerPC | Power3
quad-double

add 0.583 0.580 0.868 | 0.710
accurate add 1.280 2.464 2.468 | 1.551
mul 1.965 1.153 1.744 1 1.131
sloppy mul 1.016 0.860 1.177) 0.875
div 5.267 6.440 8.210 | 6.699
sloppy div 4.080 4.163 6.200 | 4.979
sqrt 23.646 15.003 21.415| 16.174
mpfun

add 5.729 5.362 — | 4.651
mul 7.624 7.630 — | 5.837
div 10.102 10.164 — 1 9.180

17




How Do I Obtain the New Software?

NOTE: This information is not in proceedings.
Software and documentation is available aft:
http://www.nersc.gov/ “dhbailey/mpdist

C++ version requires a C++ compiler.
Fortran-90 version requires a Fortran-90 and a C++ compiler.

Send questions or comments to:

dhbailey@lbl.gov
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