
A Comparison of Three High-Precision Quadrature Schemes
David H. Bailey1, Karthik Jeyabalan2 and Xiaoye S. Li3

Abstract
The authors have implemented three numerical quadrature schemes, using the Arbi-

trary Precision (ARPREC) software package. The objective here is a quadrature facility
that can efficiently evaluate to very high precision a large class of integrals typical of those
encountered in experimental mathematics, relying on a minimum of a priori information
regarding the function to be integrated. Such a facility is useful, for example, to per-
mit the experimental identification of definite integrals based on their numerical values.
The performance and accuracy of these three quadrature schemes are compared using a
suite of 15 integrals, ranging from continuous, well-behaved functions on finite intervals
to functions with vertical derivatives and blow-up singularities at endpoints, as well as
several integrals on an infinite interval. In results using 412-digit arithmetic, we achieve
at least 400-digit accuracy, using two of the programs, for all problems except one highly
oscillatory function on an infinite interval. Similar results were obtained using 1012-digit
arithmetic.

Keywords: numerical quadrature, numerical integration, arbitrary precision

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720 dhbailey@lbl.gov. This work was
supported in part by the Director, Office of Computational and Technology Research, Division of Math-
ematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract
number DE-AC03-76SF00098. This work was also supported in part by the National Science Foundation,
under Grant DMS-0342255.

2University of Washington, Seattle, WA 98195 cjk100@u.washington.edu.
3Lawrence Berkeley National Laboratory, Berkeley, CA 94720 xsli@lbl.gov.

1

1. Introduction
Numerical quadrature has a long and distinguished history, including contributions by

Newton, who devised the basis of what is now known as the Newton-Cotes scheme, and
Gauss, who devised Gaussian quadrature. In the twentieth century, numerous additional
schemes were devised, including extended Simpson rules, adaptive quadrature, Romberg
integration, Clenshaw-Curtis integration and others [9, 12]. In addition, numerous “ker-
nels” were devised that permit these schemes to efficiently compute definite integrals of
functions that include a particular expression as a factor.

Virtually all of the modern literature on these techniques, as well as their practical
implementations on computers, have been targeted to computing definite integrals to the
accuracy of 15 digits or less, namely the limits of ordinary IEEE 64-bit floating-point
data, which has 53 mantissa bits. Little attention has been paid to the issues of very high
precision quadrature, in part because few serious applications have been known for such
techniques, and also because techniques that work well for standard machine precision
often do not scale well to the realm of high precision. The software packages Mathematica
and Maple include arbitrary precision arithmetic, together with numerical integration to
high precision. These facilities are generally quite good, although in many cases they
either fail or require unreasonably long run times.

In the past few years, computation of definite integrals to high precision has emerged as
a useful tool in experimental mathematics. In particular, it is often possible to recognize
an otherwise unknown definite integral in analytic terms, provided its numerical value can
be calculated to high accuracy. Such experimental evaluations of integrals often involve
integer relation detection, which means finding integers ai, not all zero, such that for
a given n-long real vector (xi), we have a1x1 + a2x2 + · · · + anxn = 0. Integer relation
computations are used here to determine whether the numerical value of a definite integral
is given by a formula of a certain type with unknown integer or rational coefficients. The
most frequently used integer relation detection algorithm is the PSLQ algorithm [3]. It and
other integer relation schemes require very high precision (often hundreds or thousands
of decimal digits) in both the input data and in the operation of the algorithm to obtain
meaningful results.

As one example, recently one of the authors, together with Jonathan Borwein and
Greg Fee of Simon Fraser University in Canada, were inspired by a recent problem in the
American Mathematical Monthly [1]. They found by using one of the quadrature routines
described in this paper, together with a PSLQ integer relation detection program, that if
C(a) is defined by

C(a) =
∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

,

then

C(0) = π log 2/8 + G/2

C(1) = π/4− π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96,

2

where G =
∑

k≥0(−1)k/(2k + 1)2 is Catalan’s constant (the third of these results is the
result from the Monthly). These experimental results then led to the following general
result, rigorously established, among others:∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

As a second example, recently Borwein and one of the present authors empirically
determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]

x + 1
dx =

1

81648
[−229635L3(8)

+29852550L3(7) log 3− 1632960L3(6)π
2 + 27760320L3(5)ζ(3)

−275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π
6

−57030120L3(1)ζ(7)] ,

where L3(s) =
∑∞

n=1 [1/(3n− 2)s − 1/(3n− 1)s]. General results have been conjectured
but not yet rigorously established.

In some cases, Maple or Mathematica is able to evaluate a definite integral analytically,
but the resulting expressions are quite complicated, and thus not very enlightening. For
example, although the integrals

I1 =
∫ 1

0

t2 log(t) dt

(t2 − 1)(t4 + 1)

I2 =
∫ π/4

0

t2 dt

sin2(t)

I3 =
∫ π

0

x sin x dx

1 + cos2 x

are successfully evaluated by Maple and Mathematica, the results are somewhat lengthy
expressions involving advanced functions and complex entities. In the third problem, for
instance, the expression produced by Mathematica continues for more than 30 lines. We
suspect that there are considerably simpler closed-form versions of these integrals. Indeed,
we can obtain the following, based solely on the high-precision numerical values of these
integrals, combined with integer relation computations:

I1 = π2(2−
√

2)/32

I2 = −π2/16 + π log(2)/4 + G

I3 = π2/4.

These and numerous other examples that we could cite underscore the need for a prac-
tical, general-purpose, high-precision quadrature facility for experimental mathematics,
by which we mean a computer program that can numerically evaluate a large class of
definite integrals to high precision, given nothing other than the function definition in a

3

separate user subprogram. In other words, we seek a practical, self-contained tool that
does not rely on symbolic manipulation, the presence or absence of certain “kernels” in
the integrand, or knowledge of the behavior of the function or its derivatives. We also
seek a scheme that is well-suited to highly parallel implementation, so that a parallel com-
puter system can be utilized when required for significantly faster run times. This latter
requirement by itself rules out reliance on commercial products such as Mathematica and
Maple, since these are not yet available for highly parallel platforms.

The only a priori assumptions that we grant is that the function to be integrated has
a finite definite integral and is infinitely differentiable within the given finite interval. It
may have a singularity (either a blow-up singularity or a vertical derivative) at one or
both endpoints. We also consider functions defined on an infinite interval, such as (0,∞),
with the proviso that a linear transformation such as x → 1/(t + 1) converts the problem
to the above-mentioned class. Note that definite integrals of functions with a finite set
of discontinuities or other singularities within an interval may be computed as a sum
of definite integrals on subintervals, so that the assumption given above encompasses a
broad range of functions of interest.

We acknowledge, however, that it is most likely not possible to fashion a single nu-
merical technique that works for all functions of this class. Further, even a reasonable
problem may require an unreasonable amount of computer time given current technology.
Nonetheless we aim to do as well as possible, within these constraints, particularly within
the domain of problems that commonly arise in experimental mathematics.

2. The ARPREC Software
The quadrature techniques we describe below have been implemented using the Arbi-

trary Precision (ARPREC) computation package [4]. This software is based in part on the
multiprecision package MPFUN90 (written in Fortran-90) [6], which in turn is based on
the earlier MPFUN-77 package (written in Fortran-77) [5]. In MPFUN90, object-oriented
facilities built into the Fortran-90 language, namely custom datatypes and operator over-
loading, were exploited to permit Fortran programmers to utilize the MPFUN90 library
by making only a few minor changes (mostly type statement changes) to existing Fortran
application programs.

The ARPREC library extends the functionality of the MPFUN packages to the realm
of C/C++ programs. In particular, the ARPREC package combines the following fea-
tures, which we believe to be unique for currently available software of this type:

• Code written in C++ for high performance and broad portability.

• Both C++ and Fortran-90 translation modules, which permit existing C++ and
Fortran-90 application programs to use the arbitrary precision library by making
only a few minor changes to existing source code.

• Arbitrary precision integer, floating and complex datatypes.

• Support for datatypes with differing precision levels.

4

• Inter-operability with conventional integer and floating-point datatypes.

• Numerous common algebraic and transcendental functions (sqrt, exp, log, sin, cos,
tan, arccos, arcsin, arctan, erf, gamma and others).

• Quadrature programs (for numerical integration).

• PSLQ programs (for integer relation detection).

• Polynomial root programs, for both real and complex roots.

• Special routines, utilizing FFT-based multiplication, for extra-high-precision (over
1000 digits) computation.

The ARPREC package is based on the IEEE 64-bit floating-point arithmetic standard,
which is now implemented on virtually all computer systems, thus permitting a high
degree of portability. It includes “configure” and “make” scripts that for most Unix
systems automatically detect the software environment and perform a valid installation.
The software and documentation is freely available on the Internet [4].

3. The Three Quadrature Schemes
We describe here three numerical quadrature schemes that we have found are suit-

able for computing definite integrals to very high precision. We considered several other
schemes, including at least one adaptive method, but found that they are not competi-
tive with these schemes when high-precision results are required—their run times scale
too rapidly with the numeric precision level. Also, most of these other schemes fail for
integrands with vertical derivatives or singularities at the endpoints (a difficulty, as we
shall see, that is shared by one of the schemes we describe below).

QUADGS: A Gaussian quadrature scheme. Gaussian quadrature certainly is not new,
although most descriptions in the literature do not address the requirements of arbitrary
precision implementation. This scheme approximates an integral on [−1, 1] as the sum∑

0≤j<n wjf(xj), where the abscissas xj are the roots of the n-th degree Legendre polyno-
mial Pn(x) on [−1, 1], and the weights wj are

wj =
−2

(n + 1)P ′
n(xj)Pn+1(xj)

[2, pg. 187]. We compute an individual abscissa by using a Newton iteration root-finding
algorithm with a dynamic precision scheme. The starting value for xj in these Newton
iterations is given by cos[π(j − 1/4)/(n + 1/2)], which may be calculated using ordinary
64-bit floating-point arithmetic [14, pg. 125]. Our Newton iterations start with 40-digit
precision and iterate until convergence is achieved at this level. Thereafter our program
nearly doubles the working precision with each subsequent Newton iteration until the full
precision, p digits, desired for quadrature results is achieved. Using this approach, the
total run time for an individual abscissa computation is only about three times the run

5

time of the final iteration. We compute the Legendre polynomial function values using
an n-long iteration of the recurrence P0(x) = 0, P1(x) = 1 and

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x)

for k ≥ 2. The derivative is computed as P ′
n(x) = n(xPn(x) − Pn−1(x))/(x2 − 1). For

functions defined on intervals other than [−1, 1], a linear scaling is used to convert the
Gaussian abscissas to the given interval.

One legitimate question that can be raised here is whether the resulting Legendre
polynomial function values are accurate for large n, due to the recurrence used in the
generation algorithm. Fortunately, we have found that this error appears to be minor,
based on our implementations and tests with p up to 1000 digits and with n up to 12,288.
As we shall see in Section 7, we have obtained quadrature results accurate to over 1000
digit accuracy, for several problems suitable for Gaussian quadrature, using a working
precision (for both initialization and quadrature calculations) of only 1012 digits.

In our implementation, we pre-compute multiple levels (i.e., multiple sets) of abscissa-
weight pairs, where each level has twice as many abscissa-weight pairs as the level before.
In particular, the number of abscissa-weight pairs at level k in our program is 3 · 2k, so
that the total for m levels is

∑
k≤m 3 · 2k ≈ 6 · 2m. When evaluating an integral using

this program, we start with the first level, obtain a quadrature result, and continue to
apply additional levels until we are satisfied with the estimated accuracy of our result (see
Section 5), or else we exhaust our sets of pre-computed abscissa-weight pairs.

Our program saves additional time by dynamically increasing the working precision in
the quadrature calculation, in a similar manner as is used in calculating abscissas. We use
modest precision (80 digits) for the first two levels. Thereafter, if the estimated number
of correct digits for the quadrature result (see Section 5) at a given level is more than half
the current working precision, then the working precision is doubled before proceeding
to the next level, until the full precision of p digits has been reached. This modification
reduces run times by up to 35% for problems well-suited for Gaussian quadrature, with
even greater savings for problems that are not well-suited, since full-precision arithmetic
is not wasted on such problems.

The cost of computing abscissa-weight pairs using this scheme increases quadratically
with n, since each Legendre polynomial evaluation requires n steps. The abscissa-weight
pairs can alternately be computed using an eigenvector scheme due to Golub and Welch
[10], although this scheme requires considerably more memory, and its computational
cost also increases quadratically with n. We know of no scheme for generating Gaussian
abscissa-weight pairs that avoids this quadratic dependence on n [11]. For many well-
behaved integrand functions (as we shall see), Gaussian quadrature achieves quadratic
convergence, meaning that doubling n achieves roughly twice as many correct digits in
the quadrature result, after a few initial levels. Assuming this behavior is achieved for
a given function, this means that to achieve accuracy of p digits, one needs n to scale
linearly with p. With FFT-based multiplication (available in the ARPREC package, for
instance), the cost of basic arithmetic scales as p log p for practical precision p (i.e., up

6

to several million digits; in general an additional factor of log log p is involved). Thus the
overall cost of the Gaussian initialization process scales as roughly p3 log p.

In a similar manner, we can estimate the cost of performing a quadrature calculation
for a given integrand function once the initialization has been done. Fairly simple quadrat-
ically convergent algorithms (in which the number of accurate digits approximately dou-
bles with each successive iteration) are known for all algebraic functions and many of
the common transcendental functions, including the exponential, logarithm, trigonomet-
ric and inverse trigonometric functions [5, 6]. For such functions, the cost of a single
evaluation scales roughly as p log2 p, using FFT-based arithmetic, in the range of prac-
tical precision (for algebraic functions, it is only p log p). Assume for a moment that a
transcendental integrand function is well-suited for Gaussian quadrature, so that n scales
linearly with p, as described in the previous paragraph. Then the cost of evaluating the
integral of such a function scales roughly as p2 log2 p.

QUADERF: An error function-based quadrature scheme. This program approximates an
integral on [−1, 1] as a sum

∑
0≤j<n wjf(xj), as with Gaussian quadrature, but here the

abscissas xj are given by erf(hj), where erf(x) = (2/
√

π)
∫ x
0 e−t2 dt, and the weights wj

are given by (2/
√

π)e−(hj)2 . To compute the error function erf(x), we use the following
formula for erfc(t) = 1− erf(t) given by Crandall [8, pg. 85] (who in turn attributes it to
a 1968 paper by Chiarella and Reichel [7]):

erfc(t) =
e−t2αt

π

 1

t2
+ 2

∑
k≥1

e−k2α2

k2α2 + t2

 +
2

1− e2πt/α
+ E

where t > 0 and |E| < 3e−π2/α2
. The parameter α is chosen small enough to ensure that

the error E is sufficiently small. Given a precision of p digits, let α be defined by the
formula 10−p = 10e−π2/α2

, so that E < 10−p. Then provided that t <
√

p log 10, the
formula above is also accurate to a relative error of 10−p. The generation of xj and wj

should be performed to a relative accuracy of at least the primary precision, p1 digits,
desired for quadrature results.

In a straightforward implementation of the error function quadrature scheme, the cal-
culation of abscissa-weight pairs, for a given h, can be terminated when wj < ε1 = 10−p1 .
However, we have found that it is advantageous to compute additional abscissa-weight
pairs, continuing until wj < ε2, where the secondary epsilon ε2 = 10−p2 , and p2 = 2p1 (i.e.,
ε2 = ε2

1). These calculations may still be done with a relative accuracy of the primary
working precision p1, provided that α in the formula above for erfc is selected based on
p2 rather than p1. Additionally, we store the values erfc(hj) for subsequent quadrature
computation, rather than xj = erf(hj) = 1− erfc(hj), since the latter, many of which are
very close to 1, lose accuracy in subtraction. Then when we evaluate integrand functions
in a quadrature computation, we perform linear scaling of pre-computed abscissas using a
secondary (higher) precision of p2 digits (a linear scaling of abscissas is required whenever
the interval of integration differs from [−1, 1], as explained in Section 4). In this way, we
can use more accurate input values for an expression such as 1− t appearing in a problem
such as

∫ 1
0 et(1 − t)−1/2 dt. The function itself does not need to be computed using this

7

higher precision, so the added computational cost of this secondary precision procedure
is negligible.

This optional modification permits the use of abscissas that are closer to endpoints
than the primary epsilon ε1 would normally permit, thus achieving significantly higher
accuracy in the quadrature results for problems with a blow-up singularity at an endpoint
(see Section 4). For the test problems below, we found p2 = 2p1 (corresponding to
ε2 = ε2

1) to be adequate; with more extreme singularities, an even smaller value of ε2 may
be needed, in order that the function-weight products wjf(xj), for abscissas xj very close
to the endpoints, are smaller than ε1. If our program encounters the need for a smaller ε2

during a quadrature calculation (because |wjf(xj)| > ε1 for xj close to an endpoint), it
outputs a message. This secondary epsilon procedure and the usage of additional abscissa-
weight pairs are not needed for integrands that do not have a blow-up singularity at an
endpoint.

As with the Gaussian scheme, multiple “levels” of abscissa-weight pairs are typically
pre-computed, with each level having approximately twice as many pairs as the previous
level. In our implementation, this is controlled by setting h = 22−k for level k. With
h defined in this manner, the even-indexed abscissa-weight pairs at one level are merely
the full set at the previous level. Thus only the odd-indexed pairs need to be computed
at each level (after the first level), and, more importantly, the function to be integrated
needs to be evaluated only at the odd-indexed abscissas at each level. Additional time can
be saved for many functions by terminating the summation

∑
j wjf(xj) once the terms

wjf(xj) are consistently smaller than ε1.
With the primary epsilon set to 10−400 and the secondary epsilon set to 10−800, as in

the tests in Table 1 below, roughly n = 5.5 ·2k abscissa-weight pairs are generated at level
k, so that the total required for m levels is approximately

∑
k≤m 5.5 · 2k ≈ 11 · 2m. As we

shall see, error function quadrature achieves quadratic convergence for many problems,
so that the number n of abscissa-weight pairs needed for p-digit accuracy scales roughly
linearly with p. The cost of computing an individual abscissa-weight pair is dominated
by the cost of the series evaluation in the formula for erfc. The number of terms that
need to be calculated and summed for an erfc evaluation is linearly proportional to p.
Thus the cost of the error function initialization process, using FFT-based arithmetic,
scales as p3 log p. Even though this is the same general scaling formula as with Gaussian
quadrature, in practice the error function initialization is much faster at a given precision
and level.

For error function quadrature there is no point in attempting to dynamically increase
precision during a quadrature computation. This is because doing so would sacrifice the
advantage of needing to evaluate the integrand function only at the odd-indexed abscissas
at each level (which presumes that all previous function evaluations are fully accurate).
It is often useful, though, to first try a given problem with modest precision, say 100
digits, thus not wasting high-precision computation on a problem not well suited for this
scheme.

As we will see below, the error function quadrature scheme works very well for all of
our test problems except one highly oscillatory integrand. Assuming that a given problem

8

is well-suited for this scheme, so that the number of function evaluations needed scales
linearly with the precision p, then the cost of evaluating the integral of such a function
using this scheme scales roughly as p2 log2 p within a range of practical precision, or in
other words with the same scaling formula as Gaussian quadrature.

QUADTS: A tanh-sinh quadrature scheme. This scheme is similar to the error function
scheme. In this case, the abscissas are chosen as xj = tanh u2 and the weights wj =
u1/ cosh2 u2, where u1 = π/2 · cosh(hj) and u2 = π/2 · sinh(hj).

In a straightforward implementation, the generation of abscissa-weight pairs should
be performed with the primary precision p1 digits desired for quadrature results and
continues, for a given h, until wj < ε1 = 10−p1 . In our implementation, as with the error
function quadrature scheme, at each level we calculate additional abscissa-weight pairs,
continuing until wj < ε2, where ε2 = 10−p2 and p2 = 2p1 (i.e., ε2 = ε2

1). Also, as before, we
actually store 1− xj = 1/(eu2 cosh u2), and, during a quadrature calculation, we perform
linear scaling of these pre-computed values using the secondary precision p2.

In our tanh-sinh quadrature program, each level k of abscissa-weight pairs uses h =
2−k. As with the error function scheme, the even-indexed abscissa-weight pairs at one
level are merely the full set of pairs at the previous level, and the integrand function
needs to be evaluated only at the odd-indexed abscissas at each level. Additional time
can be saved for many functions by terminating the summation

∑
j wjf(xj) once the terms

wjf(xj) are consistently smaller than ε1. In the tests shown in Table 1 below, where the
primary epsilon is set to 10−400 and the secondary epsilon is set to 10−800, we find that
roughly 3.6 ·2k abscissa-weight pairs are generated at at level k, so that the total required
for m levels is approximately

∑
k≤m 3.6 · 2k ≈ 7.2 · 2m.

As with the other two schemes, the tanh-sinh scheme achieves quadratic convergence
for many integrand functions, so that the number n of abscissa-weight pairs required to
achieve an accuracy of p digits scales, for these functions, roughly linearly with p. The cost
of computing an individual pair with this scheme is dominated by the cost of exponential
function evaluation, for which simple quadratically convergent algorithms are known [5, 6]
(one is implemented in ARPREC). With FFT-based arithmetic, and within a practical
range of precision, the cost of one exponential evaluation scales as p log2 p. Thus the cost
of the tanh-sinh initialization process scales roughly as p2 log2 p, which is a more slowly
growing rate than that of the other two schemes.

As with error function quadrature, there is no advantage in attempting to dynami-
cally increase precision during a quadrature computation, since this would sacrifice the
advantage of needing to evaluate the function only at odd-indexed abscissas at each level.

In practice, as we shall see, tanh-sinh quadrature achieves quadratic convergence for
many integrand functions. Assuming that a given problem is of this class, so that the
number of function evaluation scales linearly with precision p, then the cost of evaluating
the integral of such a function using this method scales roughly as p2 log2 p, within a range
of practical precision, or in other words with the same scaling formula as with the other
two methods.

The tanh-sinh scheme was first introduced by Takahasi and Mori [15, 13].

9

4. The Euler-Maclaurin Summation Formula
The error function and tanh-sinh quadrature schemes are based on the Euler-Maclaurin

summation formula, which implies that for certain bell-shaped integrands, approximating
the integral by a simple step-function summation is remarkably accurate, much more so
than one would normally expect. The Euler-Maclaurin summation formula can be stated
as follows [2, pg. 180]. Let m ≥ 0 and n ≥ 1 be integers, and define h = (b − a)/n and
xj = a+jh for 0 ≤ j ≤ n. Further assume that the function f(x) is at least (2m+2)-times
continuously differentiable on [a, b]. Then∫ b

a
f(x) dx = h

n∑
j=0

f(xj)−
h

2
(f(a) + f(b))

−
m∑

i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
− E

where B2i denote the Bernoulli numbers, and

E =
h2m+2(b− a)B2m+2f

2m+2(ξ)

(2m + 2)!

for some ξ ∈ (a, b).
In the circumstance where the function f(x) and all of its derivatives are zero at the

endpoints a and b (as in a smooth, bell-shaped function), note that the second and third
terms of the Euler-Maclaurin formula are zero. Thus for such functions the error of a
simple step-function approximation to the integral, with interval h, is simply E. But
since E is less than a constant times h2m+2/(2m + 2)!, for any m, we conclude that the
error goes to zero more rapidly than any power of h. For a function defined on (−∞,∞),
the Euler-Maclaurin summation formula still applies to the resulting doubly-infinite sum
approximation, provided as before that the function and all of its derivatives tend rapidly
to zero for large positive and negative arguments.

This principle is utilized in the error function and tanh-sinh schemes by transforming
the integral of f(x) on the interval [−1, 1] to an integral on (−∞,∞) using the change
of variable x = g(t). Here g(x) is some monotonic, infinitely differentiable function with
the property that g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and also with the
property that g′(x) and all higher derivatives rapidly approach zero for large positive and
negative arguments. In this case we can write, for h > 0,∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt = h

∞∑
j=−∞

wjf(xj) + E

where xj = g(hj) and wj = g′(hj). If g′(t) and its derivatives tend to zero sufficiently
rapidly for large t, positive and negative, then even in cases where f(x) has a vertical
derivative or an integrable singularity at one or both endpoints, the resulting integrand
f(g(t))g′(t) will be a smooth bell-shaped function for which the Euler-Maclaurin argument
applies. Thus, in these cases, the error E in this approximation decreases faster than any
power of h.

10

The error function integration scheme uses g(t) = erf(t) and g′(t) = (2/
√

π)e−t2 . Note
that g′(t) is merely the bell-shaped probability density function, which is well-known to
converge rapidly to zero, together with all of its derivatives, for large arguments. The tanh-
sinh scheme uses g(t) = tanh(π/2 · sinh t) and g′(t) = π/2 · sinh t/ cosh2(π/2 · sinh t), for
which the convergence to zero is compound exponential, even faster than the probability
density function.

The doubly-infinite sum in the formula above can be approximated by a finite sum
provided one takes reasonable care to insure that the truncated tails are insignificant.
This is the rationale for the secondary epsilon scheme mentioned in Section 3: in cases
where the integrand has a blow-up singularity at an endpoint, this scheme permits one
to sum additional terms, with abscissas very close to the endpoints, until the rapidly
decreasing weights overwhelm the large function values. If this is done properly, the finite
sum will be within the target tolerance of the full doubly-infinite summation. Along
this line, whenever the given interval of integration is other than [−1, 1], a linear scaling
must be performed on the pre-computed abscissas during the quadrature computation.
As we mentioned in Section 3, when using the secondary epsilon scheme it is important
to perform this scaling using a (higher) secondary precision, so that arguments for the
integrand function evaluation near the endpoints are as accurate as possible.

5. Error Estimation
As mentioned above, we seek a practical, general purpose, high-precision numerical

integration facility that does not depend on a priori bounds of the function or its deriva-
tives. Rigorous error bounds are not possible for any quadrature scheme without such
knowledge [9, pg. 420]. Instead, we use the following heuristic error estimation scheme,
which is inspired by (although it does not rely on) the quadratically convergent behavior
often achieved by these schemes. In spite of its heuristic nature, it appears to work well
in practice, both on problems for which highly accurate quadrature results are obtained,
as well as for those for which highly accurate results are not obtained.

Let Sk be the computed approximations of the integral for levels k up to level n.
Then the estimated error En at level n is one if n ≤ 2, zero if Sn = Sn−1, and otherwise
10d, where d = max(d2

1/d2, 2d1, d3, d4) (except d is not set greater than 0). In this
formula, d1 = log10 |Sn−Sn−1|, d2 = log10 |Sn−Sn−2|, d3 = log10(ε1 ·maxj |wjf(xj)|), and
d4 = log10 max(|wlf(xl)|, |wrf(xr)|. Here xl is the closest abscissa to the left endpoint and
xr is the closest abscissa to the right endpoint. The term d4 is not present for Gaussian
quadrature. In our Gaussian quadrature program, ε1 = 10−q, where q is the current
working precision in digits, which for a given problem starts at 80 digits and then is
dynamically increased, as described in Section 3, until it achieves the full precision p. For
the error function and tanh-sinh programs, ε1 = 10−p1 , where p1 is the primary precision,
in digits, as described in Section 3. Calculations of d may be done to ordinary double
precision accuracy (i.e., 15 digits), and the resulting value may be rounded to the nearest
integer.

The rationale for the four terms in the formula for d is as follows. The first term is
a simple multiplicative projection based on the differences between the quadrature result

11

at the current level and the past two levels. The second term stems from the observation
that the best one can hope for is quadratic convergence; in other words, the number of
correct digits cannot be more than twice the previous level. The third term derives from
the observation that the error cannot be less than the current epsilon times the largest
function-weight element that is being summed. The fourth term is based on the fact
that in the two Euler-Maclaurin-based schemes, the accuracy of the quadrature result is
limited by the sizes of the final function-weight terms near the two endpoints, since the
infinite sum mentioned in Section 4 is truncated there.

One does not need to rely on this estimation scheme if one is willing to continue
computation until the quadrature results from two successive levels agree to within the
full primary precision (or the final pre-computed set of abscissa-weight pairs is exhausted).
This would significantly increase the run time for many problems, since it would be
necessary to compute with at least one additional level of abscissas and weights. Also,
even two consecutive values in full agreement still do not constitute a mathematically
rigorous guarantee of correctness.

6. Test Problems
The following 15 integrals were used as a test suite to compare these three quadrature

schemes. In each case an analytic result is known, as shown below, facilitating the checking
of results. The 15 integrals are listed in 5 groups:

• 1–4: Continuous functions on finite intervals.

• 5–6: Continuous functions on finite intervals, but with a vertical derivative at an
endpoint.

• 7–10: Functions on finite intervals with an integrable singularity at an endpoint.

• 11–13: Functions on an infinite interval.

• 14–15: Oscillatory functions on an infinite interval.

1 :
∫ 1

0
t log(1 + t) dt = 1/4

2 :
∫ 1

0
t2 arctan t dt = (π − 2 + 2 log 2)/12

3 :
∫ π/2

0
et cos t dt = (eπ/2 − 1)/2

4 :
∫ 1

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96

5 :
∫ 1

0

√
t log t dt = −4/9

6 :
∫ 1

0

√
1− t2 dt = π/4

12

7 :
∫ 1

0

√
t√

1− t2
dt = 2

√
πΓ(3/4)/Γ(1/4)

8 :
∫ 1

0
log t2 dt = 2

9 :
∫ π/2

0
log(cos t) dt = −π log(2)/2

10 :
∫ π/2

0

√
tan t dt = π

√
2/2

11 :
∫ ∞

0

1

1 + t2
dt =

∫ 1

0

ds

1− 2s + 2s2
= π/2

12 :
∫ ∞

0

e−t

√
t

dt =
∫ 1

0

e1−1/s ds√
s3 − s4

=
√

π

13 :
∫ ∞

0
e−t2/2 dt =

∫ 1

0

e−(1/s−1)2/2 ds

s2
=

√
π/2

14 :
∫ ∞

0
e−t cos t dt =

∫ 1

0

e1−1/s cos(1/s− 1) ds

s2
= 1/2

15 :
∫ ∞

0

sin t

t
dt =

∫ π

0

sin t

t
dt + 40320

∫ 1/π

0
t7 sin(1/t) dt− 1

π
+

2

π3
− 24

π5
+

720

π7

=
π

2

Problem 4, as was mentioned above, appeared in Sept. 2002 American Mathematical
Monthly [1]. All are typical of the sorts of problems that the authors have encountered in
experimental math research, except that in each of these cases, analytic solutions are well
known. Problems 11-15 are integrals on an infinite interval, which is in each case here
[0,∞). Except for Problem 15, such integrals are evaluated by using the transformation
s = 1/(t + 1), as shown above. In Problem 15, the integral is written as the sum of
integrals on [0, π] and [π,∞). Then integration by parts is applied several times to the
second integral of this pair, resulting in the expression shown above. This expression
requires the evaluation of the integrals

∫ π
0 t−1 sin t dt and

∫ 1/π
0 t7 sin(1/t) dt, which are

significantly better behaved than the original, resulting in faster convergence. Even with
this transformation, however, Problem 15 remains the most difficult of the set, as we shall
see.

7. Results of Tests
The three quadrature programs, QUADGS, QUADERF and QUADTS, were each

implemented using the ARPREC arbitrary precision computation package [4], in a very
similar programming style, with the primary user working precision set at 400 digits (the
actual internal working precision employed by the software is roughly 412 digits). We
sought results good to the target accuracy of the corresponding primary epsilon, namely
10−400. A secondary precision of 800 digits and a corresponding secondary epsilon of
10−800 were employed in QUADERF and QUADTS, as described in Section 3, to achieve
improved accuracy on problems with blow-up singularities (800-digit arithmetic is used

13

QUADGS QUADERF QUADTS
Prob. Level Time Error Level Time Error Level Time Error

Init 12 25,130.59 12 224.51 12 51.50
1 6 1.04 10−404 9 7.93 10−404 8 3.36 10−405

2 6 0.92 10−403 9 4.35 10−403 8 2.48 10−404

3 5 0.29 10−401 9 5.07 10−402 7 1.60 10−402

4 6 0.81 10−403 9 12.52 10−403 8 4.99 10−403

5 12 13.15 10−13 9 7.62 10−404 7 1.84 10−404

6 12 1.23 10−15 9 0.56 10−403 8 0.25 10−403

7 12 2.29 10−5 9 1.15 10−401 8 0.49 10−402

8 12 12.55 10−8 9 8.47 10−404 7 1.72 10−402

9 12 17.72 10−9 9 9.87 10−402 8 4.77 10−401

10 12 6.56 10−5 9 2.52 10−401 8 1.32 10−400

11 7 0.07 10−412 10 0.94 10−403 9 0.36 10−403

12 12 7.51 10−5 11 7.75 10−401 10 4.95 10−402

13 10 8.25 10−404 12 8.66 10−403 10 3.59 10−402

14 12 62.35 10−404 12 17.62 10−402 11 14.54 10−402

15 5/12 6.47 10−24 9/12 2.05 10−22 7/12 3.82 10−25

Table 1: 400-digit runs

here only in linear scaling of pre-computed abscissas, and thus has negligible overall cost).
One exception to these specifications is in Problem 15, where a primary precision level
of 100 digits and a secondary precision of 200 digits were used (these are more than
ample, given the accuracy achieved). In each of the three programs, 12 levels (i.e., 12
sets) of abscissa-weight pairs were pre-computed. Additional levels could have been pre-
computed, but this would not have materially changed these results. Each quadrature
program was run blindly—beginning at level one and continuing at successively higher
levels, each of which approximately doubles the run time, until one of these two conditions
was met: (1) the maximum level (level 12) was completed; or (2) the estimated error
achieved the accuracy target, namely 10−400. These runs were made on a 2 GHz Apple
G5 system, using the IBM xlC and xlf90 compilers, with O3 optimization.

The results of these tests are given in Table 1 below. The first line gives the run time,
in seconds, for the initialization process. The initialization time is listed here separately
from the integral evaluations, since we expect that in many practical applications, the
abscissas and weights will be computed once and then stored for numerous subsequent
evaluations. Initialization produced 24,670 abscissa-weight pairs for QUADGS, 43,951
pairs for QUADERF, and 28,965 pairs for QUADTS. Table 1 includes the number of
levels used by each of the three programs for the various problems. In Problem 15, where
two individual integrals are evaluated, the number of levels used for both steps are shown
in the table. The errors are shown to within one order of magnitude and are based on
the analytic evaluations given in the previous section.

14

QUADGS QUADERF QUADTS
Prob. Level Time Error Level Time Error Level Time Error

Init 12 73,046.28 13 3,891.63 12 390.83
1 7 6.86 10−1012 10 97.16 10−1004 9 37.33 10−1010

2 7 9.13 10−1011 11 112.11 10−1003 9 32.64 10−1010

3 7 10.01 10−1009 10 90.29 10−1004 9 41.23 10−1008

4 7 9.31 10−1010 11 453.92 10−1003 9 67.39 10−1009

5 12 14.70 10−13 10 88.43 10−1004 8 18.54 10−1010

6 12 1.39 10−15 10 6.75 10−1004 9 2.29 10−1010

7 12 2.49 10−5 10 15.21 10−1001 9 4.40 10−1002

8 12 13.89 10−8 10 98.25 10−1004 8 19.19 10−1009

9 12 18.66 10−9 10 113.49 10−1004 9 48.18 10−1008

10 12 7.06 10−5 10 35.80 10−1001 9 15.55 10−1002

11 8 0.41 10−1012 11 10.41 10−1003 10 3.03 10−1009

12 12 7.98 10−5 13 211.03 10−1001 11 65.05 10−1002

13 11 98.50 10−1011 13 117.09 10−1003 12 85.61 10−1007

Table 2: 1,000 Digit Runs

We have also successfully run these three programs with 1000-digit precision (1012-
digit internal precision). In Table 2, we include 1000-digit results for Problems 1 through
13 (in other words, for all categories of problems except the last). For these problems,
24,670 abscissa-weight pairs (12 levels) were generated for QUADGS, 138,982 pairs (13
levels) for QUADERF and 32,708 pairs (12 levels) for QUADTS. No modifications were
made to the programs for these runs, other than to change the precision and epsilon levels:
1000 digits primary precision, 2000 digits secondary precision and corresponding epsilons.

8. Analysis
The Gaussian quadrature program (QUADGS) did extremely well on the first set

of problems, namely integrals of bounded, well-behaved continuous functions on finite
intervals. In both Table 1 and Table 2, it was between four and 40 times faster than
QUADERF on these problems, and between three and seven times faster than QUADTS.
Its accuracy on these problems was consistently less than the target tolerance. QUADGS
also did well on Problems 11, 13 and 14, achieving the target tolerance in reasonable run
times. But for the other problems, which are characterized by functions that are not well-
behaved at endpoints, its accuracy was quite poor, even when all 12 levels of abscissas
and weights were utilized (it is well known that Gaussian quadrature is not very effective
for such integrands [11]). Another major drawback of the Gaussian scheme is that its
initialization time is many times higher than that of the other two schemes.

In the results in Table 1, the error function quadrature program (QUADERF) pro-
duced highly accurate answers, each less than the target tolerance of 10−400, on all prob-
lems except the last one, including all problems with vertical derivatives and blow-up

15

Level Prob. 2 Prob. 4 Prob. 6 Prob. 8 Prob. 10 Prob. 12 Prob. 14
1 10−1 10−1 10−1 100 10−1 100 100

2 10−2 10−5 10−3 10−3 10−3 10−1 10−1

3 10−6 10−6 10−8 10−10 10−8 10−3 10−2

4 10−13 10−12 10−17 10−21 10−16 10−6 10−3

5 10−26 10−25 10−34 10−43 10−33 10−11 10−5

6 10−52 10−51 10−68 10−87 10−66 10−20 10−10

7 10−104 10−102 10−134 10−173 10−132 10−37 10−19

8 10−206 10−204 10−266 10−348 10−264 10−70 10−37

9 10−411 10−409 10−529 10−696 10−527 10−132 10−68

10 10−821 10−819 10−1004 10−1004 10−1001 10−249 10−128

11 10−1003 10−1003 10−472 10−242

12 10−896 10−460

13 10−1001 10−876

Table 3: QUADERF errors at each level of computation

singularities. It was several times slower than QUADGS on the first set of problems,
but its timing was comparable to QUADGS on Problems 13 and considerably faster than
QUADGS on Problem 14. In the results in Table 2, it achieved the full target tolerance
of 10−1000 on all problems, with reasonable run times.

The tanh-sinh quadrature program (QUADTS) also achieved accuracies within the
target tolerance in every case in both tables except for Problem 15 in Table 1. What’s
more, its run times were consistently better than QUADERF. Its initialization times were
four times faster than QUADERF at 400 digits, and ten times faster at 1000 digits.

Quadratic convergence, or in other words the near-doubling of correct digits with each
successive level, after the first few levels, was evident in all three schemes for problems in
which fully accurate results were obtained. As an illustration, we include in Table 3 the
actual errors of the QUADERF program at each of 13 levels, for a selection of the test
problems, based on 1000-digit runs.

The value of the secondary epsilon scheme mentioned in Section 3 is evident in the
highly accurate results achieved by both QUADERF and QUADTS on problems with
blow-up singularities, notably Problems 7, 10 and 12. When these three problems are run
without the secondary epsilon scheme at 400 digit precision (i.e., when p2 = p1 = 400 and
ε2 = ε1 = 10−400), both the QUADERF and QUADTS programs produce results accurate
to only 200 digits. At 1000-digit precision, without the secondary epsilon scheme, the two
programs achieve only 500 correct digits. But with the secondary epsilon scheme, both
programs produce fully accurate results on all three problems.

None of the three programs did well on Problem 15 (see Table 1). Indeed, this problem
was included, in part, to illustrate that even rather sophisticated quadrature programs
can stumble on some rather innocent-looking problems. In this particular problem, none
of the three quadrature programs could not handle the highly oscillatory behavior of

16

the integrand t7 sin(1/x) near t = 0. Note that this problem does not have a blow-up
singularity at either endpoint, in the sense of function values that approach infinity, so the
secondary epsilon scheme does not help here. For that matter, even 100-digit arithmetic
is clearly wasted on this problem—a result correct to 25 digits or so can be computed in
a fraction of a second by employing the double-double or quad-double software (accurate
to 32 and 64 digits, respectively) available at the ARPREC website [4].

The error estimation scheme given in Section 5 performed very well in these tests. For
all problems and for each of the three programs, it produced estimated error values that
were within four orders of magnitude of the actual errors in the results, and in most cases
were within one order. This was true both for cases where the final quadrature result was
fully accurate and for those for which it was not.

We should also comment here that as far as we can tell, our implementations of these
quadrature algorithms, as well as the evaluation of the functions involved in the integrands
and the accumulation of sums, do not appear to suffer significantly from numerical round-
off error. This is indicated not only by the highly accurate results we have achieved, but
also by some separate tests that we have done. Evidently in these calculations, the 412-
digit (or 1012-digit) internal working precision is sufficient to cover the numerical error
that arises in the computation of abscissa-weight pairs and in function evaluations. In
cases (such as Problem 15 in Table 1) where only a few accurate digits were obtained,
numerical round-off error was not a factor.

9. Summary
Each of these quadrature programs has proven its value in a certain domain of quadra-

ture problems. The Gaussian quadrature program is extremely fast and accurate for
continuous, well-behaved integrands, although it requires a lengthy initialization. Both
the error function and tanh-sinh programs were able to evaluate all problems except for
Problem 15 in Table 1, including all problems with vertical derivatives and blow-up sin-
gularities at the endpoints, to the full target precision of 400 or 1000 digits. We have also
tried these programs at even higher precision levels, with similarly accurate results (but
significantly longer run times, as expected).

Overall, the tanh-sinh scheme appears to be the best for integrands of the type most
often encountered in experimental math research. In addition to its excellent accuracy and
run time performance, the initialization cost for this scheme is much less than the other
two, particularly at 1000-digit precision. This is not surprising, since the computational
cost of this procedure has a lower-rate growth formula than the other two schemes (p2 log p
instead of p3 log p). The tanh-sinh scheme is not a “universal” quadrature scheme, since
for instance it was not able to handle Problem 15, but as we mentioned in the introduction,
it is unlikely that a truly “universal” quadrature scheme exists.

Our implementations of these three schemes (both C++ and Fortran-90 versions), as
well as the associated ARPREC arbitrary precision computation software, are available
from the website http://crd.lbl.gov/˜dhbailey/mpdist.

We wish to add here that each of the three schemes described above are well-suited
for parallel computation, both for computation of the abscissa-weight pairs and for the

17

evaluation of integrals. This is because the key parts of the computation are naturally
parallel. Note, for example, that each of the individual abscissa-weight pairs can be
computed independently, in all three quadrature initialization schemes. The same applies
to each individual function evaluation in the accumulation of the approximation to the
integral, at a given level. The present authors are currently working on an implementation
for highly parallel computer platforms. We expect reasonably linear scalability, as a
function of the number processors, for up to at least 64 processors.

18

References

[1] Zafar Ahmed, “Definitely an Integral,” American Mathematical Monthly, vol. 109
(2002), no. 7, pg. 670–671.

[2] Kendall E. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.

[3] David H. Bailey and David Broadhurst, “Parallel Integer Relation Detection: Tech-
niques and Applications,” to appear in Mathematics of Computation, available from
the URL http://crd.lbl.gov/˜dhbailey/dhbpapers.

[4] David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, “ARPREC: An
Arbitrary Precision Computation Package,” technical report LBNL-53651, software
and documentation available from the URL http://crdl.bl.gov/˜dhbailey/mpdist.

[5] David H. Bailey, “Multiprecision Translation and Execution of Fortran Programs,”
ACM Transactions on Mathematical Software, vol. 19 (1993), pg. 288–319.

[6] David H. Bailey, “A Fortran-90 Based Multiprecision System,” ACM Transactions
on Mathematical Software, vol. 21 (1995), pg. 379–387.

[7] C. Chiarella and A. Reichel, “On the Evaluation of Integrals Related to the Error
Function,” Mathematics of Computation, vol. 22 (1968), pg. 137–143.

[8] Richard E. Crandall, Topics in Advanced Scientific Computation, Springer-Verlag,
1996.

[9] Philip J. Davis and Philip Rabinowitz, Methods of Numerical Integration, Academic
Press, New York, 1984.

[10] G. H. Golub and J. H. Welsch, “Calculation of Gauss Quadrature Rules,” Mathe-
matics of Computation, vol. 22 (1969), pg. 221–230.

[11] William Kahan, personal communication, Feb. 2004.

[12] Arnold R. Krommer and Christoph W. Ueberhuber, Computational Integration,
SIAM, Philadelphia, 1998.

[13] M. Mori, “Developments in the Double Exponential Formula for Numerical Integra-
tion,” Proceedings of the International Congress of Mathematicians, Springer-Verlag,
1991, pg. 1585–1594.

[14] William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vetterling,
Numerical Recipes, Cambridge University Press, 1986.

[15] H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,”
Publications of RIMS, Kyoto University, vol. 9 (1974), pg. 721–741.

19

