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Why Computational Biology?Why Computational Biology?

(1) Community effort to define problems with genuine computational complexity

Genome analysis, gene modeling, sequence-based annotation

Low resolution fold prediction:  Single Molecule

High resolution structure prediction and protein folding:  Single Molecule

Molecular recognition or Docking:  Multi-molecule complexes

Cellular Decision modeling

(2) Putting it all together

Deinococcus radiodurans

CASP competition for protein structure prediction

(3) Research examples from THG group

Global Optimization approach to predict protein structure

Simulation/experiment to understand hydration in protein folding
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Sequence  Structure Function

Genome projects
Microbial organisms

C elegans
Human Structural Genomics Initiative

High throughput effort underway
NIH, new beamlines

LBNL: ALS Functional Annotation 
Initiatives

           Gene deletion projects
Yeast two-hybrid screening

Gene expression micro-arrays
In vivo GFP protein (kinetics)

Revolutionary Experimental Efforts in Biology
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Computational Biology White Paper

http://cbcg.lbl.gov/ssi-csb

Technical document to define areas of computational biology problems of scale

Organization:
Introduction to biological complexity, needs for advanced computing (1)
Scientific areas (2-6)
Computing hardware, software, CSET issues (7)
Appendices

For each scientific chapter:
illustrate with state of the art application (current hpc platform)
define algorithmic kernals
deficiencies of methodologies
define what can be accomplished with 100 teraflop computing

Community document
More organized CB community in government labs, universities

Support for CB by the broader biological community
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High-Throughput Genome Sequence Assembly,
Modeling, and Annotation

The Genome Channel Browser to access and visualize current data flow, analysis and
modeling. (Manfred Zorn, NERSC)

Genome sequencing and annotation   →→→→  Bioinformatics
100,000 human genes; genes from other organism
Structure/functional annotation at the sequence level

Computation to determine regions of a genome that might yield new folds
Experimental Structural Genomics Initiative
Functional annotation at the structure level by experiment
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Characterize the link between
protein sequence and fold topology

Experimental Structural Genomics Initiative
Define basis set of folds: ~103 structures to be determined

Predict Fold Topology from Computation (~105 folds)

Functional annotation at the structural level by computation

Sequence Assignments to Protein Fold Toplogy (David Eisenberg, UCLA)
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Low Resolution Fold Topologies to High
Resolution Structure

Influenza virus poised above
model of a lipid membrane will
involve a 100,000 atom MD
simulation over long timescales
to understand this step in the
mechanism of viral infection.
(Tobias, UCI)

One microsecond simulation of a fragment of small protein
Villin headpiece

Duan & Kollman, Science 1998

Low Resolution Structures from Predicted Fold Topology
Fold class gives some idea of biological function, but….

Higher Resolution Structures with Biochemical Relevance
Drug design, bioremediation, new pathogen disease
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Simulating Molecular Recognition/Docking

Changes in the structure of DNA that
can be induced by proteins.

Through such mechanisms proteins
regulate genes, repair DNA, and
carry out other cellular functions.

Improvements in Methodology and Algorithms of Higher Resolution Structure
Break down size, time, lengthscale bottlenecks

Protein, DNA recognition, binding affinity, mechanism of drug binding
Simulating two-hybrid yeast experiments
Protein-protein and Protein-nucleic acid docking
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Modeling the Cellular Program

Three mammalian signal transduction pathway that share common molecular elements (i.e. they
cross-talk). From the Signaling PAthway Database (SPAD) (http://www.grt.kyushu-u.ac.jp/spad/)

Integrating Computational/Experimental Data at all levels
Sequence, structural functional annotation

Simulating biochemical/genetic networks to mode cellular decisions
Modeling of network connectivity (sets of reactions: proteins, small

molecules, DNA)
Functional analysis of that network (kinetics of the interactions)

Interleukins 1 and 6 

Erythropoietin Platelet-Derived Growth Factor
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Implicit Collaborations with Computer Science

Computer Hardware & Portability
Applications described running on various platforms

T3D, T3E, IBM SP's, ASCI Red, Blue

Information Technologies and Database Management
Integrating biological databases; CORBA and java
Data Warehousing
ultra-high-speed networks

Ensuring Scalability on Parallel Architectures
implicit algorithmic scaling
paradigm/software library support tools for effective parallelization
strategies: 100 teraflop

Meta Problem Solving Environments
geographically distributed software paradigm: “plug and play” paradigm

Visualization
Querying data which is “information dense”
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Feedback from Biotech Industry Meeting

Jim Cavalcoli, Ph.D. Patrick O'Hara Herve Recipon
Bioinform. Manager, PDLMG VP, Bioinformatics Asst. Dir. bioinformatics
Parke-Davis, Warner-Lambert ZymoGenetics, Inc diaDexus (Incyte)

Seattle WA

Pete Smietana, Ph.D. Peter Karp, Ph.D. Rick Bott
Sr. Software Engineer, Scientific Fellow X-ray crystallographer
Bioinformatics Pangea Systems Genencor
Ciphergen

Julie Rice Eric Martin
Computational Chemist Sr. Scientist Small Molecule Discovery
IBM-Almaden Chiron

LBNL: Gilbert, Head-Gordon, Holbrook, Mian, Rokhsar, Simon, Spengler, Zorn

Biotech industry perspective on Computational Biology white paper

Is there strong objection to any of the content?
NO, very supportive

Are there other areas to be included, stronger emphasis placed?
Databases: integrating, querying, visualization

LBNL 2/25/99
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Deinococcus Radiodurans
Strange berry that withstands radiation

Bacteria isolated from tins of spoiled meat given “sterilizing” doses of γγγγ radiation.
3x106 base pairs, or ~3000 protein products
fully sequenced by TIGR under DOE/OBER sponsorship

Three components to DR's successful DNA repair strategy
specifics of the DNA repair mechanism
the fact that it is multi-genomic
coupling of repair, replication, export of damaged DNA from intracellular medium.

Construct molecular models of key components of the DNA repair system:
Damaged DNA
Multigenomic repair intermediates such as Holliday junctions
Proteins known are yet to be discovered to be involved in DNA repair
Protein-protein or protein-nucleic acids that couple repair, replication, transport.

Develop better fold recognition, comparative modeling, and ab initio prediction
methods, and docking methods to describe macromolecular complexes.

Application of methodologies will be to fully and completely annotate the DR genome
Learn underlying components of highly-honed strategies for DNA repair in DR.

Significant portions of community white paper on high end computing needs
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The Need for Advanced Computing for
Computational Biology

Computational Complexity arises from inherent factors:

100,000 gene products just from human; genes from many other
organisms

Experimental data is accumulating rapidly

N2, N3, N4, etc. interactions between gene products

Combinatorial libraries of potential drugs/ligands

New materials that elaborate on native gene products from many
organisms

Algorithmic Issues to make it tractable

Objective Functions

Optimization

Treatment of Long-ranged Interactions

Overcoming Size and Time scale bottlenecks

Statistics
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Acknowledgements for Community White
Paper in Computational Biology

The First Step Beyond the Genome Project:
High-Throughput Genome Assembly, Modeling,
and Annotation

P. LaCascio, R. Mural, J, Snoddy, E.
Uberbacher, ORNL
S. Mian, F. Olken, S. Spengler, M. Zorn: LBNL
David States, Washington University

From Genome Annotation to Protein Folds:
Comparative Modeling and Fold Assignment
D. Eisenberg, UCLA
A. Lapedes, LANL
A. Sali, Rockefeller University
B. Honig, Columbia University

 Low Resolution Folds to High Resolution
Protein Structure and Dynamics
C. Brooks, Scripps Research Institute
P. Kollman &Y. Duan, UCSF
A. McCammon & V. Helms, UCSD
G. Martyna, Indiana University
D.Tobias, UCI
T. Head-Gordon, LBNL

Biotechnology Advances from Computational
Structural Genomics: In Silico Drug Design and
Mechanistic Enzymology

R. Abagyan, NYU, Skirball Institute
P. Bash, ANL
J. Blaney, Metaphorics, Inc.
F. Cohen, UCSF
M. Colvin, LLNL
I. Kuntz, UCSF

Linking Structural Genomics to Systems
Modeling: Modeling the Cellular Program

A. Arkin & D. Wolf, LBNL
P. Karp, PangeaS. Subramaniam, U Illinois
Urbana

Implicit Collaborations Across the DOE Mission
Sciences

M. Colvin & C. Musick, LLNL
T. Gaasterland, ANL (now Rockefeller)
S. Crivelli & T. Head-Gordon, LBNL
G. Martyna, Indiana University
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Protein Fold Recognition, Structure
Prediction, and Folding

Teresa Head-Gordon
Physical Biosciences and Life Sciences Divisions

Lawrence Berkeley National Laboratory

April 5, 2000
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Computational Challenges in Biology

(1) Drawing analogies with known protein structures
Sequence homology, Structural Homology

Inverse Folding, Threading

(2) Ab initio prediction: the ability to extrapolate to unknown folds

multiple minima problem; robust objective function

(3) Ab initio folding: the ability to follow kinetics, mechanism

robust objective function

severe time-scale problem

proper treatment of long-ranged interactions

(4) Ab initio prediction: Global Optimization Approaches

Stochastic Perturbation and Soft Constraints

(5) Simplified Models that Capture the Essence of Real Proteins

Off-Lattice Model that Connect to Experiments: Whole Genomes?

(6) Simulating experimental observables

Hydration forces in folding
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What is a protein?

A biopolymer is distinct from a heteropolymer in one very important way

It’s 3-D structure is uniquely tailored to perform a specific function

NMR, X-ray and electron crystallography solve structures slowly (1/2-3 yrs.)

Alanine

Proline

Threonine

Tryptophan

Isoleucine
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The “Beads” are Chemically Complex Structures
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Large-scale experiment to assess protein structure prediction methods

It consists of three parts
the collection of targets for prediction from the experimental community

X-ray and NMR on structures about to be solved
the collection of blind predictions from the modeling community

comparative modeling
threading/fold recognition
ab initio prediction

the assessment and discussion of the results

CASP1: was held in December, 1994.
33 protein prediction targets
34 prediction groups took part submitting over 100 predictions

CASP2: was held in December, 1996 (Docking included)
42 protein prediction targets
70 prediction groups took part submitting over 900 predictions

CASP3: was held in December, 1998 (Docking dropped)
43 protein prediction targets
98 prediction groups took part submitting over 4000 predictions

Critical Assessment of Techniques for Protein 
Structure Prediction (CASP)
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Only method that can provide models with an r.m.s.d. error lower than 2Å

All current comparative modeling methods consist of four sequential steps:

(1) identify proteins with known 3D structures related to the target sequence
search for templates with high sequence identity

(2) align them with target sequence and pick structures to use as templates
very dependent on step (1)

(3) build model for target sequence given alignment with the template structures
very dependent on step (2)

(4) model is evaluated using a variety of criteria.
Can usually detect where errors are large

Rigid body: superposition of rigid bodies from related sub-structures

Segment matching: combine database of structure segments

Satisfaction of spatial restraints: distance geometry or optimization to satisfy
spatial restraints from alignment of target sequence with homologous known
templates

Comparative Modeling
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If sequence identity > 50% alignment is straightforward to construct
there are not many gaps, structural differences limited to loops/side-chains.
1 Å r.m.s.d. over 90% of residues

If sequence identity is between 30%-40%; alignment is not as straightfoward
gaps in alignment more frequent/longer; structural differences become larger
1.5 Å r.m.s.d. for 80% of residues; rest of residues modeled with large errors

If sequence identity below 30%; comparative modeling is usually unsuccessful
Insertions longer than 8 residues cannot be modeled accurately at this time

CASP1: Problems in alignment
               Some major mistakes in geometry: D-amino acids

CASP2: Some improvement in alignment accuracy
      general improvement loop modeling
      progress in automation

CASP3: no discernable improvement in alignment accuracy, overall prediction
   blurred distinction between comparative modeling and threading

However alignment quality is the most critical aspect of success
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Fold Recognition, Inverse Folding, and Threading

Sequence Assignments to Protein Fold Toplogy (David Eisenberg, UCLA)

Fold Assignment: Which member of library does target sequence best match?

Inverse Fold Assignment: Find sequences in genome that match a given fold

Threading: Actual tertiary structure prediction

Results:   25% of sequences recognize their folds with high confidence
~25% of folds do not exist in library
~50% of time because need better scoring functions/alignments

100,000's of sequences/10,000's of structures (each 102-103 amino acids long)

When sequence identity is in the "twilight zone" <25-30%
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Protein Fold Recognition: Threading
Uni-positional objective function

Define 1D profile of 3D tertiary structure using aa properties
Define compatibility of twenty aa’s for each position in the 1-D profile
Dynamic programming: 1-D alignments of test sequence to profile: optimal

alignments of subsequences extends to optimal alignments of whole; objective functions
are one-dimensional E=Σ Vi +Σ Vgap

Complexity: scales as L2 Whole human genome: 1013 flops
Multi-positional objective function

NP-hard if variable-length gaps and model nonlocal effects
Recursive dynamic programming, HMM’s, stochastic grammers
Complexity: scales as L3 Whole human genome: ~1016 flops

CASP1: Alignments poor
All target folds not predicted by any one group
False positives a problem

CASP2: Alignments better
      No clear consensus on best method/approach

False positives less of a problem; targets were easier than Casp1!
 CASP3: Alignment improvements stall

Remote fold relationships poorly detected
       Return of uni-positional methods: HMM's in twilight zone
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Less reliance on knowledge-based approaches
Methods:

Secondary structure prediction
Predicting residue contacts
Conformational search techniques based on energy function

CASP1: overall much less good than comparative modeling/fold recognition
       Strong movement toward fold recognition

CASP2: some improvement (still not competitive with fold recognition)
               secondary structure state of the art established

PhD (~72% residues correct on average)
prediction of rough topologies of small proteins

 CASP3: No formal pre-division of targets: comparative modeling, threading and ab initio.
                  'ab initio' methods increasingly relying on structure knowledge: 'mini-threading'

true ab initio predictions: r.m.s.d. over 10Å for 90% of predictions
Longest predicted fragment under a cut-off r.m.s.d.

80% of sequence within 4Å r.m.s.d. is a good prediction
100% of sequence within ~6Å r.m.s.d. is a good prediction

Ab Initio Structure Prediction
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Computational Protein Folding

One microsecond simulation of a fragment of the protein, Villin.  (Duan & Kollman, Science 1998)

(1) robust objective function✔✔✔✔

all atom simulation with molecular water present: some structure present

(2) severe time-scale problem✔✔✔✔

required 109 energy and force evaluations: parallelization (spatial decomposition)

(3) proper treatment of long-ranged interactions X

cut-off interactions at 8Å, poor by known simulation standards

(4) Statistics (1 trajectory is anecdotal) X

Many trajectories required to characterize kinetics and thermodynamics
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Computational Protein Folding

(1) Size-scaling bottlenecks: Depends on complexity of energy function, V

Empirical (less accurate): cN2; ab initio (more accurate):CN3 or worse ;  c<<C

empirical force field used

“long-ranged interactions” truncated so cM2 scaling; M < N

spatial decomposition, linked lists

(2) Time-Scale of motions bottlenecks (∆∆∆∆t)

Use timestep commensurate with fastest timescale in your system

bond vibrations: 0.01Å amplitude: 10-15 seconds (1fs)

Shake/Rattle bonds (2fs)

Multiple timescale algorithms (~5fs) (not used here)
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1 Microsecond simulation of Villin Headpiece in Water
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Generate 109 steps on 1 teraflop machine

1000 Flops per energy/force evaluation

          N2 evaluation of energy & forces            N evaluation of energy & forces

Ewald Sums:

• Particle Mesh Ewald (N)
Spatial Decomposition in r-space; Parallelization of FFT's in k-space

• Evaluate full Ewald sum in r-space using FMM techniques
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Generate expanded tree of configurations

Explore tree of configurations in depth

Sequence, an objective function, a search method     Tertiary
Structure

♦Incorporation of Constraints Predicted by Machine Learning Methods
♦Global Optimization Approach to Predict Tertiary Structure
♦Parallelization of Tree Search Problems
♦Protein and Aqueous Solvent Energy Surface

Ab Initio Protein Structure Prediction
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        Input units represent amino acid

sequence

     Hidden units map sequence to structure

          Output Units represent secondary

structure class (helix, sheet, coil)

         Weights are optimizable variables that are trained on database of proteins

Network Connectivity Design Yu &Head-Gordon, Phys. Rev. E (1995)
input and output representation
number of hidden neurons
weight connection patterns that detect structural features

Three factors inhibit machine learning:
Adequacy of Training Database
Network Connectivity
Multiple Minima Problem in Space of Network Variables

Designed Neural Networks to Predict
Protein Secondary Structure
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No sequence homology through multiple alignments

Networks without design

Train Test

Total predicted correctly = 66%  Total predicted correctly = 62.5%

Helix:   51%    Cαααα=0.42 Helix:  48% Cαααα=0.38

Sheet:   38%    Cββββ=0.39 Sheet:  28%   Cββββ    =0.31

Coil:     82%   Cc =0.36 Coil:    84%   Cc  =0.35

Network with Design: Yu and Head-Gordon

Train Test

Total predicted correctly = 67% Total predicted correctly = 66.5%

Helix:   66%    Cαααα=0.52 Helix:  64% Cαααα=0.48

Sheet:   63%    Cββββ=0.46 Sheet:  53%   Cββββ    =0.43

Coil:     69%    Cc=0.43 Coil:    73%   Cc  =0.44

Combine networks of Yu and Head-Gordon with multiple alignments

Neural Network Results
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Stochastic/perturbation in sub-space of dihedral angles predicted coil

(1) Local minimization of a set of start points in sub-space

(2) Define a critical radius

a measure of whether a point is within a basis of attraction

(3) Generate many sample points in sub-space volume, V

(4) Evaluate r.m.s. between new sample points and minimizers of (1)

If  (r.m.s. < rk) ignore this sample point

(5) Minimize sample points not in critical distance, merge into (1)

Choose new set of coil dihedral angles and repeat

Crivelli, Philip, Byrd, Eskow, Schnabel,Yu, Head-Gordon (1999). In New Trends in Computational Methods for Large
Molecular Systems, in press.

Probabilistic theoretical guarantees of global optimum in sub-spaces
Global optimization of full space: solve series of global optimum in sub-spaces?
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Global Optimization Algorithm:
Stochastic Perturbation
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Static vs. Dynamic Load Balancing of Tasks

The work complexity to reach a minimum is highly variable

Central Processor
↓↓↓↓

GOPT1 GOPT2 GOPT3 GOPT4 GOPT5
↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓

W1,1→→→→W1,11 W2,1→→→→W2,11 W3,1→→→→W3,11 W4,1→→→→W4,11 W5,1→→→→W5,11

Central Processor: Assigns starting coordinates to GOPT’s

Task time is highly variable

GOPT’s: Divide up sub-space into N regions for global search

  Task time is variable

Workers: Generate sample points; find best minimizer in region

(Number of workers depends on sub-space)

Dynamical load balancing of tasks: reassigning GOPT/workers to GOPT/workers

Crivelli, Head-Gordon, Byrd, Eskow, Schnabel (1999). Lecture Notes in Computer Science, Euro-Par '99
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Static vs. Dynamic Load Balancing of Tasks

Static Number of Tree Nodes: 14 configurations
 Increasing number of supervisors
Gain in efficiency of a factor of 4-8  depending on job size

Expanded Number of Tree Nodes: 14 to 83 conformations
 No loss in scalability

Hierarchical/Dynamic Load Balancing
Generic to large tree search problems
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The Energy (Objective) Function

Empirical Protein Force Fields: AMBER, CHARMM, ECEPP
"gas phase"

αααα-helical sequence/ββββ-sheet structure     ββββ-sheet sequence/αααα-helical structure
Energies the same! Makes energy minimization difficult!

Add penalty for exposing hydrophobic surface: favors more compact structures
E native folds< E misfolds for a few test cases

Solvent accessible surface areas: Numerically difficult to use in optimization

We have used potentials of mean force similar to our scattering experiments

CATH protein classification: http://pdb.pdb.bnl.gov/bsm/cath
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2utg_A: 70aa αααα-chain of uteroglobin
Crystal structure          Prediction

     R.M.S.  7.4Å

1pou: 72 aa DNA binding protein
Prediction       crystal structure

R.M.S.  6.3Å

We still have not reached
 crystal structure energy

 yet!

As good as results for
CASP3!

Gearing up for CASP4

Results on αααα-Helical Proteins
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Simplified Models for Simulating Protein
Folding for Whole Genomes

(1) Statistics ✔✔✔✔
Can do many trajectories to converge kinetics and thermodynamics

(2) severe time-scale problem✔✔✔✔

characterize full folding pathway: mechanism, kinetics, thermodynamics

(3) proper treatment of long-ranged interactions ✔✔✔✔?
all interactions are evaluated; no explicit electrostatics

(4) robust objective function?
good comparison to experiments

Simplifies the “real” energy
surface topology sufficiently
that you can do:
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Protein Folding Model of IgG-Binding Protein's L & G

Model of Protein G/L Protein L

Protein chain is 56-residues

Sequence is specified as:

♦ hydrophobic (B), hydrophilic   (L),
or neutral (N) beads

♦ secondary structure dihedrals

Benefit of separation of 1°°°° and 2°°°°:

♦ Role of non-local (bead-bead) and
local (dihedral) interactions

♦ Changing secondary structure
propensity: mutation studies

♦ increases complexity of model:
more than three flavors
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Characterization of Free Energy Landscape:
Multiple Multi-Histogram Method

Six-dimensional histograms over energy and five order parameters

Rg, χχχχ, χχχχH, χχχχββββ1, and χχχχββββ2 (((( ))))∑∑∑∑
++++≥≥≥≥

−−−−−−−−====
K

4ij,i

Nat
ijij rr

M

1 εεεεθθθθχχχχ

Collapse-concomitant-with-folding scenario

More accessible states closer to the diagonal

Non-compact structure, partly native
structure

Collapse transition is at only a slightly higher temperature than the folding transition

Recent time-resolved SAXS experiments on protein L (Doniach, Baker 1999):

Chain collapse is rate-limiting, occuring closely in time to native state formation
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♦T=0.62: weak transition to form some helical structure, without beta hairpin
structures.

♦T=0.46: all three secondary structure order parameters show native-like structure

♦Major peak in the heat capacity curve corresponds to the folding transition

Strong support for the high cooperativity of the folding process in this model

      Heat capacity vs. Temperature              2°°°° Structure similarity v.s. Temperature

Results for α/βα/βα/βα/β Protein Fold: Thermodynamics
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Free Energy Surface is Asymmetric to ββββ-hairpin Formation

Consider two kinetic mechanisms

(1) ββββ−−−−hairpin #1 and helix first, then form ββββ−−−−hairpin #2: Intermediate

(2) β−β−β−β−hairpin #2 and helix first, then fold β−β−β−β−hairpin #1: No Intermediate

While Protein L and G have nearly identical tertiary structure:
        Protein G has high energy intermediate along the folding pathway

Park, O'Neil, Roder, Biochemistry (1997)
         Protein L appears to be purely two-state with a single barrier

Yi, Baker, Protein Sci. (1996)
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Mutations on α/βα/βα/βα/β Protein consistent with Mutation Studies of Protein L

helix-destabilized and turn#1-destabilized mutants fold noticeably slower
consistent with their formation as intermediate in dominant folding pathway

turn#2-destabilized mutants fold as fast as wildtype
turn#1 is not destabilized

Gu, Kim, Baker, J. Mol. Biol. (1997); Baker et al., J. Mol. Biol. (1998)
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Computational Complexity of Simplified
Models for Protein Folding

Thermodynamics of the folding process are characterized using
multi-histogram method: complexity increases with multiple order parameters

constant-temperature Langevin simulations
Folding kinetics are characterized by tabulating

mean-first passage times, and temperature scans
One week using two Compaq/Dec EV10000 (~50 specfp95) per protein sequence

100,000 sequences for Human Genome; Ample mutational study data
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Determining the Role of Hydration Forces in the Folding of Model Proteins

Scattered x-ray beam and resulting image pattern from N-acetyl-leucine-methylamide in
water. Cover of Feature Article in J. Phys. Chem. B.

Sorenson, Hura, Soper, Head-Gordon (1999), 103 5413-5426
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Concentrated solutions of N-acetyl-Leucine-methylamide

   X-ray Solution Scattering
N-acetyl-leucine-methylamide in Water

at a concentration of 1:50 a new feature appears at Q~0.8Å-1

develops into peak at same effective Bragg spacing maximum concentration of 1:25

represents a stable solute-solute configuration

Hura, Sorenson, Glaeser & Head-Gordon (2000). In Perspectives in Drug Discovery & Design, V. 17, 1-
12.

Model of Late Protein Folding Events
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Molecular Dynamics Simulation of Excess Scattering Intensity.

Isolution(Q) = Isolute-solute (Q) + Isolute-water (Q) + Iwater-water (Q) + Iintramolecular (Q)

(((( ))))∑∑∑∑ ∑∑∑∑====
A B

ABBABA QHbbcc)Q(I , (((( )))) (((( ))))[[[[ ]]]] (((( ))))
dr

Qr

Qrsin
1rgr4QH

0
AB

2
AB ∫∫∫∫

∞∞∞∞
−−−−==== πρπρπρπρ ,

bA: neutron scattering length for A g(r): radial distribution function
cA: atomic fraction of A ρρρρ: total number of atoms per unit volume

Q: momentum transfer

Simulation:
AMBER 95: for solutes (solute-water interactions parameterized with TIP3P)

SPC: for water (like TIP3P but slightly better water structure)

Water-water: gOO(r), gOH(r), gHH(r) Water-solute: gOX(r) and gHX(r)

Simulation Details:

NVT ensemble (Nosé-Hoover chain of thermostats)

1.5fs timestep, Rattle, Ewald sums

150ps equilibration, 300ps statistics



    CS 267

Interpretation of New Diffraction Feature at 0.8Å-1 for NALMA in Water

What is Isolute-solute (Q)                gC(r)?

Consider qualitatively different solute distribution function

Dispersed

Small clusters

Single large cluster
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Dispersed and small NALMA aggregates are preferred

Dispersed/Small Clusters Large Clusters

What is right: Hydrophilic/hydrophobic character of the protein backbone/side chains
local side chain and backbone conformational entropy costs

What is questionable: demixing entropy (monomers) vs. conformational entropy (chain)

result should be extensible to real proteins which are never this hydrophobic.
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Polarizable TIP4P model (Rick & Berne, JCP 1994)
polarizability essential for reproducing experimental observable?

However, scattering experiments over the last ~30 years are still inadequate
what is gOO(r)?

Quantitative Agreement between Experiment and Simulation
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The Role of Water for Life in Precarious Circumstances
AAAS, 2000

John A. Baross, University of Washington

Thermophilic microbes from black smoker
chimneys

Results from recent joint expedition of U.
Washington and American Museum of Natural
History

Image from http://www.amnhonline.org/expeditions

How do you explain growth and function at extremes of temperature and pressure?

    Amino acid composition of total protein extracted from bacterial cells

only unusually high levels of glutamic acid

Are protein sequences/structures different between mesophiles and thermophiles?

Sequence correlations with increased stability were not evident (Baross 1998)

Topology differences neglible, but smaller loops, tighter core (Dansen et al., 1998)

More sensitive statistical analysis?

✸✸✸✸Maintain stability but remain flexible (functional) in face of environmental extremes?

Do physical hydration forces change with temperature and/or pressure? (Baross 1998)
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